Molecular dynamics simulation of Fe-Si alloys using a neural network machine learning potential

被引:7
|
作者
Sun, Huaijun [1 ,2 ]
Zhang, Chao [3 ]
Tang, Ling [4 ]
Wang, Renhai [5 ]
Xia, Weiyi [2 ,6 ]
Wang, Cai-Zhuang [2 ,6 ]
机构
[1] Zhejiang Agr & Forestry Univ, Jiyang Coll, Zhuji 311800, Peoples R China
[2] Ames Lab, US Dept Energy, Ames, IA 50011 USA
[3] Yantai Univ, Dept Phys, Yantai 264005, Peoples R China
[4] Zhejiang Univ Technol, Coll Sci, Dept Appl Phys, Hangzhou 310023, Peoples R China
[5] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Peoples R China
[6] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
基金
中国国家自然科学基金;
关键词
AMORPHOUS-IRON DISILICIDE; AB-INITIO; EPSILON-FESI; ENERGY; AL; TRANSITION; FILMS;
D O I
10.1103/PhysRevB.107.224301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Interatomic potential development using machine learning (ML) approaches has attracted a lot of attention in recent years because these potentials can effectively describe the structural and dynamical properties of complex materials at the atomistic level. In this work, we present the development of a neural network (NN) deep ML interatomic potential for Fe-Si alloys, and we demonstrate the effectiveness of the NN-ML potential in predicting the structures and energies of liquid and crystalline phases of Fe-Si alloys in comparison with the results from ab initio molecular dynamics simulations or experimental data. The developed NN-ML potential is also used to perform molecular dynamics simulations to study the structures of Fe-Si alloys with various compositions under rapid solidification conditions. The short-ranged orders in the rapidly solidified Fe-Si alloys are also analyzed by a cluster alignment method.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Primary radiation damage in Si1 x Ge x alloys: Molecular dynamics study with machine-learning interatomic potential
    Li, Huyang
    Meng, Xiangli
    Jing, Yuhang
    Cong, Lingzhi
    Zhang, Xin
    Zhao, Junqing
    Sun, Yi
    Li, Weiqi
    Yan, Jihong
    Yang, Jianqun
    Li, Xingji
    COMPUTATIONAL MATERIALS SCIENCE, 2025, 246
  • [22] Vector Hysteresis Processes for Innovative Fe-Si Magnetic Powder Cores: Experiments and Neural Network Modeling
    Antonio, Simone Quondam
    Fulginei, Francesco Riganti
    Faba, Antonio
    Chilosi, Francesco
    Cardelli, Ermanno
    MAGNETOCHEMISTRY, 2021, 7 (02) : 1 - 16
  • [23] Machine learning interatomic potential for molecular dynamics simulation of the ferroelectric KNbO3 perovskite
    Thong, Hao-Cheng
    Wang, XiaoYang
    Han, Jian
    Zhang, Linfeng
    Li, Bei
    Wang, Ke
    Xu, Ben
    PHYSICAL REVIEW B, 2023, 107 (01)
  • [24] Molecular Dynamics Simulation of Zinc Ion in Water with an ab Initio Based Neural Network Potential
    Xu, Mingyuan
    Zhu, Tong
    Zhang, John Z. H.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (30): : 6587 - 6595
  • [25] Simulation of threshold displacement energy in Fe-Cr-Al alloys using molecular dynamics
    Ye, Tianzhou
    Wu, Yingwei
    Wang, Zetao
    Zhang, Jing
    Wang, Mingjun
    Chen, Ping
    Tian, Wenxi
    Su, G. H.
    Qiu, Suizheng
    JOURNAL OF NUCLEAR MATERIALS, 2024, 588
  • [26] Molecular dynamics simulation of displacement cascades in Fe-Cr alloys
    Malerba, L
    Terentyev, D
    Olsson, P
    Chakarova, R
    Wallenius, J
    JOURNAL OF NUCLEAR MATERIALS, 2004, 329 : 1156 - 1160
  • [27] Mechanical properties of AlCoCrCuFeNi high-entropy alloys using molecular dynamics and machine learning
    Nguyen, Hoang-Giang
    Le, Thanh-Dung
    Nguyen, Hong-Giang
    Fang, Te-Hua
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2024, 160
  • [28] Accelerating Elastic Property Prediction in Fe-C Alloys through Coupling of Molecular Dynamics and Machine Learning
    Risal, Sandesh
    Singh, Navdeep
    Yao, Yan
    Sun, Li
    Risal, Samprash
    Zhu, Weihang
    MATERIALS, 2024, 17 (03)
  • [29] OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials
    Eastman, Peter
    Galvelis, Raimondas
    Pelaez, Raul P.
    Abreu, Charlles R. A.
    Farr, Stephen E.
    Gallicchio, Emilio
    Gorenko, Anton
    Henry, Michael M.
    Hu, Frank
    Huang, Jing
    Kramer, Andreas
    Michel, Julien
    Mitchell, Joshua A.
    Pande, Vijay S.
    Rodrigues, Joao P. G. L. M.
    Rodriguez-Guerra, Jaime
    Simmonett, Andrew C.
    Singh, Sukrit
    Swails, Jason
    Turner, Philip
    Wang, Yuanqing
    Zhang, Ivy
    Chodera, John D.
    De Fabritiis, Gianni
    Markland, Thomas E.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 128 (01): : 109 - 116
  • [30] Unsupervised Machine Learning in the Analysis of Nonadiabatic Molecular Dynamics Simulation
    Zhu, Yifei
    Peng, Jiawei
    Xu, Chao
    Lan, Zhenggang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (38): : 9601 - 9619