A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion

被引:185
|
作者
Albahri, A. S. [1 ]
Duhaim, Ali M. [2 ]
Fadhel, Mohammed A. [3 ]
Alnoor, Alhamzah [4 ]
Baqer, Noor S. [5 ]
Alzubaidi, Laith [6 ,7 ]
Albahri, O. S. [8 ,9 ]
Alamoodi, A. H. [10 ]
Bai, Jinshuai [6 ,7 ]
Salhi, Asma
Santamaria, Jose
Ouyang, Chun
Gupta, Ashish [6 ,7 ]
Gu, Yuantong [6 ,7 ]
Deveci, Muhammet
机构
[1] Iraqi Commiss Comp & Informat ICCI, Baghdad, Iraq
[2] Minist Educ, Nasiriyah, Iraq
[3] Univ Sumer, Coll Comp Sci & Informat Technol, Rifai, Iraq
[4] Southern Tech Univ, Basrah, Iraq
[5] Minist Educ, Baghdad, Iraq
[6] Queensland Univ Technol, Sch Mech Med & Proc Engn, Brisbane, Qld 4000, Australia
[7] Queensland Univ Technol, ARC Ind Transformat Training Ctr Joint Biomech, Brisbane, Qld 4000, Australia
[8] Mazaya Univ Coll, Comp Tech Engn Dept, Nasiriyah, Iraq
[9] La Trobe Univ, Dept Comp Sci & Informat Technol, Melbourne, Vic, Australia
[10] Univ Pendidikan Sultan Idris UPSI, Fac Comp & Meta Technol FKMT, Tanjung Malim, Perak, Malaysia
基金
澳大利亚研究理事会;
关键词
Trustworthiness; Explainability; Artificial intelligence; Healthcare; Information fusion; MONITORING-SYSTEM; BLOCKCHAIN; FRAMEWORK; AI; PREDICTION; DIAGNOSIS; NETWORKS; MEDICINE; MODELS;
D O I
10.1016/j.inffus.2023.03.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the last few years, the trend in health care of embracing artificial intelligence (AI) has dramatically changed the medical landscape. Medical centres have adopted AI applications to increase the accuracy of disease diag-nosis and mitigate health risks. AI applications have changed rules and policies related to healthcare practice and work ethics. However, building trustworthy and explainable AI (XAI) in healthcare systems is still in its early stages. Specifically, the European Union has stated that AI must be human-centred and trustworthy, whereas in the healthcare sector, low methodological quality and high bias risk have become major concerns. This study endeavours to offer a systematic review of the trustworthiness and explainability of AI applications in healthcare, incorporating the assessment of quality, bias risk, and data fusion to supplement previous studies and provide more accurate and definitive findings. Likewise, 64 recent contributions on the trustworthiness of AI in healthcare from multiple databases (i.e., ScienceDirect, Scopus, Web of Science, and IEEE Xplore) were identified using a rigorous literature search method and selection criteria. The considered papers were categorised into a coherent and systematic classification including seven categories: explainable robotics, prediction, decision support, blockchain, transparency, digital health, and review. In this paper, we have presented a systematic and comprehensive analysis of earlier studies and opened the door to potential future studies by discussing in depth the challenges, motivations, and recommendations. In this study a systematic science mapping analysis in order to reorganise and summarise the results of earlier studies to address the issues of trustworthiness and objectivity was also performed. Moreover, this work has provided decisive evidence for the trustworthiness of AI in health care by presenting eight current state-of-the-art critical analyses regarding those more relevant research gaps. In addition, to the best of our knowledge, this study is the first to investigate the feasibility of utilising trustworthy and XAI applications in healthcare, by incorporating data fusion techniques and connecting various important pieces of information from available healthcare datasets and AI algorithms. The analysis of the revised contri-butions revealed crucial implications for academics and practitioners, and then potential methodological aspects to enhance the trustworthiness of AI applications in the medical sector were reviewed. Successively, the theo-retical concept and current use of 17 XAI methods in health care were addressed. Finally, several objectives and guidelines were provided to policymakers to establish electronic health-care systems focused on achieving relevant features such as legitimacy, morality, and robustness. Several types of information fusion in healthcare were focused on in this study, including data, feature, image, decision, multimodal, hybrid, and temporal.
引用
收藏
页码:156 / 191
页数:36
相关论文
共 50 条
  • [21] Explainable and interpretable artificial intelligence in medicine: a systematic bibliometric review
    Frasca M.
    La Torre D.
    Pravettoni G.
    Cutica I.
    Discov. Artif. Intell., 2024, 1 (1):
  • [22] Explainable Artificial Intelligence Methods in Combating Pandemics: A Systematic Review
    Giuste, Felipe
    Shi, Wenqi
    Zhu, Yuanda
    Naren, Tarun
    Isgut, Monica
    Sha, Ying
    Tong, Li
    Gupte, Mitali
    Wang, May D. D.
    IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2023, 16 : 5 - 21
  • [23] Explainable artificial intelligence in skin cancer recognition: A systematic review
    Hauser, Katja
    Kurz, Alexander
    Haggenmueller, Sarah
    Maron, Roman C.
    von Kalle, Christof
    Utikal, Jochen S.
    Meier, Friedegund
    Hobelsberger, Sarah
    Gellrich, Frank F.
    Sergon, Mildred
    Hauschild, Axel
    French, Lars E.
    Heinzerling, Lucie
    Schlager, Justin G.
    Ghoreschi, Kamran
    Schlaak, Max
    Hilke, Franz J.
    Poch, Gabriela
    Kutzner, Heinz
    Berking, Carola
    Heppt, Markus, V
    Erdmann, Michael
    Haferkamp, Sebastian
    Schadendorf, Dirk
    Sondermann, Wiebke
    Goebeler, Matthias
    Schilling, Bastian
    Kather, Jakob N.
    Froehling, Stefan
    Lipka, Daniel B.
    Hekler, Achim
    Krieghoff-Henning, Eva
    Brinker, Titus J.
    EUROPEAN JOURNAL OF CANCER, 2022, 167 : 54 - 69
  • [24] Quality of reporting of randomised controlled trials of artificial intelligence in healthcare: a systematic review
    Shahzad, Rida
    Ayub, Bushra
    Siddiqui, M. A. Rehman
    BMJ OPEN, 2022, 12 (09):
  • [25] Analysis and evaluation of explainable artificial intelligence on suicide risk assessment
    Hao Tang
    Aref Miri Rekavandi
    Dharjinder Rooprai
    Girish Dwivedi
    Frank M. Sanfilippo
    Farid Boussaid
    Mohammed Bennamoun
    Scientific Reports, 14
  • [26] Analysis and evaluation of explainable artificial intelligence on suicide risk assessment
    Tang, Hao
    Miri Rekavandi, Aref
    Rooprai, Dharjinder
    Dwivedi, Girish
    Sanfilippo, Frank M.
    Boussaid, Farid
    Bennamoun, Mohammed
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [27] ASSESSMENT OF RISK OF BIAS IN ARTIFICIAL INTELLIGENCE-BASED IMAGING MODELS IN INFLAMMATORY BOWEL DISEASE - A SYSTEMATIC REVIEW
    Liu, Xiaoxuan
    Reigle, James
    Prasath, Surya
    Dhaliwal, Jasbir
    GASTROENTEROLOGY, 2023, 164 (06) : S1166 - S1167
  • [28] A Systematic Review of the Barriers to the Implementation of Artificial Intelligence in Healthcare
    Ahmed, Molla Imaduddin
    Spooner, Brendan
    Isherwood, John
    Lane, Mark
    Orrock, Emma
    Dennison, Ashley
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (10)
  • [29] Artificial intelligence for healthcare and medical education: a systematic review
    Sun, Li
    Yin, Changhao
    Xu, Qiuling
    Zhao, Weina
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2023, 15 (07): : 4820 - 4828
  • [30] SHIFTing artificial intelligence to be responsible in healthcare: A systematic review
    Siala, Haytham
    Wang, Yichuan
    SOCIAL SCIENCE & MEDICINE, 2022, 296