BCM-VEMT: classification of brain cancer from MRI images using deep learning and ensemble of machine learning techniques

被引:9
|
作者
Saha, Prottoy [1 ]
Das, Rudra [1 ]
Das, Shanta Kumar [1 ]
机构
[1] Khulna Univ Engn & Technol, Dept Comp Sci & Engn, Khulna 9203, Bangladesh
关键词
Brain cancer; Convolutional neural network; Transfer learning; Ensemble of classifiers; Machine learning; MRI images; TUMOR CLASSIFICATION;
D O I
10.1007/s11042-023-15377-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Brain cancer is quite possibly the most common cause of death in recent years. Appropriate diagnosis of the cancer type empowers the specialists to make the right choice of treatment, decision, and to save the patient's life. It goes without saying the importance of a computer-aided diagnosis system with image processing that can classify the tumor types correctly. In this paper, an enhanced approach has been proposed that can classify brain tumor types from magnetic resonance images (MRI) using deep learning and an ensemble of machine learning (ML) algorithms. The system named BCM-VEMT can classify among four different classes that consist of three categories of brain cancers (Glioma, Meningioma, and Pituitary) and a non-cancerous class, which means normal type. A convolutional neural network was developed to extract deep features from the MRI images. These extracted deep features are fed into ML classifiers to classify among these cancer types. Finally, a weighted average ensemble of classifiers is used to achieve better performance by combining the results of each ML classifier. The dataset of the system has a total of 3787 MRI images of four classes. BCM-VEMT has achieved better performance with 97.90% accuracy for the Glioma class, 98.94% accuracy for Meningioma, 98.92% accuracy for Pituitary and 98.00% accuracy for the Normal class. BCM-VEMT can have great significance for medical sectors in classifying brain cancer types.
引用
收藏
页码:44479 / 44506
页数:28
相关论文
共 50 条
  • [41] A Novel Deep Learning Method for Recognition and Classification of Brain Tumors from MRI Images
    Masood, Momina
    Nazir, Tahira
    Nawaz, Marriam
    Mehmood, Awais
    Rashid, Junaid
    Kwon, Hyuk-Yoon
    Mahmood, Toqeer
    Hussain, Amir
    DIAGNOSTICS, 2021, 11 (05)
  • [42] Osteosarcoma detection in histopathology images using ensemble machine learning techniques
    Deepak, K. V.
    Bharanidharan, R.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [43] Classification of Corneal Nerve Images Using Machine Learning Techniques
    Salahuddin, Tooba
    Qidwai, Uvais
    INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2019, 11 (03): : 1 - 9
  • [44] SKIN LESION CLASSIFICATION FROM DERMOSCOPIC IMAGES USING DEEP LEARNING TECHNIQUES
    Lopez, Adria Romero
    Giro-i-Nieto, Xavier
    Burdick, Jack
    Marques, Oge
    2017 13TH IASTED INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (BIOMED), 2017, : 49 - 54
  • [45] EFFICIENT SEGMENTATION MODEL USING MRI IMAGES AND DEEP LEARNING TECHNIQUES FOR MULTIPLE SCLEROSIS CLASSIFICATION
    Langat, Gilbert
    Zou, Beiji
    Kui, Xiaoyan
    Njagi, Kevin
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2024, 22 (05) : 61 - 98
  • [46] Sentiment classification on product reviews using machine learning and deep learning techniques
    Singh, Neha
    Jaiswal, Umesh Chandra
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (12) : 5726 - 5741
  • [47] A Comprehensive Analysis on Question Classification Using Machine Learning and Deep Learning Techniques
    Kogilavani, S., V
    Malliga, S.
    Preethi, A.
    Nandhini, L.
    Praveen, S. R.
    MOBILE COMPUTING AND SUSTAINABLE INFORMATICS, 2022, 68 : 825 - 838
  • [48] Intelligent Classification of Liver Diseases using Ensemble Machine Learning Techniques
    Nithyashri
    Goel, Harsh
    Hada, Manvendra Singh
    2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, : 1183 - 1188
  • [49] QUIC Network Traffic Classification Using Ensemble Machine Learning Techniques
    Almuhammadi, Sultan
    Alnajim, Abdullatif
    Ayub, Mohammed
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [50] Classification of Architectural Heritage Images Using Deep Learning Techniques
    Llamas, Jose
    Lerones, Pedro M.
    Medina, Roberto
    Zalama, Eduardo
    Gomez-Garcia-Bermejo, Jaime
    APPLIED SCIENCES-BASEL, 2017, 7 (10):