BCM-VEMT: classification of brain cancer from MRI images using deep learning and ensemble of machine learning techniques

被引:9
|
作者
Saha, Prottoy [1 ]
Das, Rudra [1 ]
Das, Shanta Kumar [1 ]
机构
[1] Khulna Univ Engn & Technol, Dept Comp Sci & Engn, Khulna 9203, Bangladesh
关键词
Brain cancer; Convolutional neural network; Transfer learning; Ensemble of classifiers; Machine learning; MRI images; TUMOR CLASSIFICATION;
D O I
10.1007/s11042-023-15377-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Brain cancer is quite possibly the most common cause of death in recent years. Appropriate diagnosis of the cancer type empowers the specialists to make the right choice of treatment, decision, and to save the patient's life. It goes without saying the importance of a computer-aided diagnosis system with image processing that can classify the tumor types correctly. In this paper, an enhanced approach has been proposed that can classify brain tumor types from magnetic resonance images (MRI) using deep learning and an ensemble of machine learning (ML) algorithms. The system named BCM-VEMT can classify among four different classes that consist of three categories of brain cancers (Glioma, Meningioma, and Pituitary) and a non-cancerous class, which means normal type. A convolutional neural network was developed to extract deep features from the MRI images. These extracted deep features are fed into ML classifiers to classify among these cancer types. Finally, a weighted average ensemble of classifiers is used to achieve better performance by combining the results of each ML classifier. The dataset of the system has a total of 3787 MRI images of four classes. BCM-VEMT has achieved better performance with 97.90% accuracy for the Glioma class, 98.94% accuracy for Meningioma, 98.92% accuracy for Pituitary and 98.00% accuracy for the Normal class. BCM-VEMT can have great significance for medical sectors in classifying brain cancer types.
引用
收藏
页码:44479 / 44506
页数:28
相关论文
共 50 条
  • [1] BCM-VEMT: classification of brain cancer from MRI images using deep learning and ensemble of machine learning techniques
    Prottoy Saha
    Rudra Das
    Shanta Kumar Das
    Multimedia Tools and Applications, 2023, 82 : 44479 - 44506
  • [2] Brain Tumor Classification Using an Ensemble of Deep Learning Techniques
    Patro, S. Gopal Krishna
    Govil, Nikhil
    Saxena, Surabhi
    Kishore Mishra, Brojo
    Taha Zamani, Abu
    Ben Miled, Achraf
    Parveen, Nikhat
    Elshafie, Hashim
    Hamdan, Mosab
    IEEE ACCESS, 2024, 12 : 162094 - 162106
  • [3] Feature extraction from MRI ADC images for brain tumor classification using machine learning techniques
    Sahan M. Vijithananda
    Mohan L. Jayatilake
    Badra Hewavithana
    Teresa Gonçalves
    Luis M. Rato
    Bimali S. Weerakoon
    Tharindu D. Kalupahana
    Anil D. Silva
    Karuna D. Dissanayake
    BioMedical Engineering OnLine, 21
  • [4] An automated brain tumor detection and classification from MRI images using machine learning techniques with IoT
    Budati, Anil Kumar
    Katta, Rajesh Babu
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2022, 24 (09) : 10570 - 10584
  • [5] Feature extraction from MRI ADC images for brain tumor classification using machine learning techniques
    Vijithananda, Sahan M.
    Jayatilake, Mohan L.
    Hewavithana, Badra
    Goncalves, Teresa
    Rato, Luis M.
    Weerakoon, Bimali S.
    Kalupahana, Tharindu D.
    Silva, Anil D.
    Dissanayake, Karuna D.
    BIOMEDICAL ENGINEERING ONLINE, 2022, 21 (01)
  • [6] An automated brain tumor detection and classification from MRI images using machine learning techniques with IoT
    Anil Kumar Budati
    Rajesh Babu Katta
    Environment, Development and Sustainability, 2022, 24 : 10570 - 10584
  • [7] Skin cancer detection using ensemble of machine learning and deep learning techniques
    Jitendra V. Tembhurne
    Nachiketa Hebbar
    Hemprasad Y. Patil
    Tausif Diwan
    Multimedia Tools and Applications, 2023, 82 : 27501 - 27524
  • [8] Skin cancer detection using ensemble of machine learning and deep learning techniques
    Tembhurne, Jitendra V.
    Hebbar, Nachiketa
    Patil, Hemprasad Y.
    Diwan, Tausif
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (18) : 27501 - 27524
  • [9] Deep learning techniques for classification of brain MRI
    Wahlang I.
    Sharma P.
    Sanyal S.
    Saha G.
    Maji A.K.
    Wahlang, Imayanmosha (imayanwahlang@gmail.com), 1600, Inderscience Publishers (19): : 571 - 588
  • [10] Machine Learning and Deep Learning Techniques to Predict Overall Survival of Brain Tumor Patients using MRI Images
    Chato, Lina
    Latifi, Shahrain
    2017 IEEE 17TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2017, : 9 - 14