An integral transform via the bounded linear operators on abstract Wiener space

被引:3
|
作者
Chung, Hyun Soo [1 ]
机构
[1] Dankook Univ, Dept Math, Cheonan 31116, South Korea
关键词
Bounded linear operator; Integral transform; Convolution product; First variation; Cameron-Storvick type theorem; CONVOLUTION;
D O I
10.2298/FIL2317541C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain some results of a more rigorous mathematical structure that can guarantee the orthogonality of an orthogonal set even when results and formula on abstract Wiener integrals or some transforms using bounded linear operators. We then establish the existence of an integral transform on abstract Wiener space. Finally, we obtain some fundamental formulas with respect to the integral transform involving the Cameron-Storvick type theorem.
引用
收藏
页码:5541 / 5552
页数:12
相关论文
共 50 条
  • [31] INTERTWINING PROPERTIES OF BOUNDED LINEAR OPERATORS ON THE BERGMAN SPACE
    Das, Namita
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2012, 18 (03): : 230 - 242
  • [32] The commuting graph of bounded linear operators on a Hilbert space
    Ambrozie, C.
    Bracic, J.
    Kuzma, B.
    Mueller, V.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (04) : 1068 - 1087
  • [33] On bounded pseudodifferential operators in Wiener spaces
    Amour, Laurent
    Jager, Lisette
    Nourrigat, Jean
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (09) : 2747 - 2812
  • [34] THE PSEUDOSPECTRA OF BOUNDED LINEAR OPERATORS ON QUASI NORMED SPACE
    Ammar, Aymen
    Bouchekoua, Ameni
    Lazrag, Nawrez
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (03): : 773 - 786
  • [35] Convergence of random bounded linear operators in the Skorokhod space
    Vadori, N.
    Swishchuk, A.
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2019, 27 (02) : 131 - 142
  • [36] On the -order on the set of linear bounded operators in Banach space
    Efimov, M. A.
    MATHEMATICAL NOTES, 2013, 93 (5-6) : 784 - 788
  • [37] Analytic Fourier-Feynman transform and convolution of functionals on abstract Wiener space
    Chang, KS
    Kim, BS
    Yoo, I
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2000, 30 (03) : 823 - 842
  • [38] Double integral transforms and double convolution products of functionals on abstract Wiener space
    Chung, H. S.
    Skoug, D.
    Chang, S. J.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (11) : 922 - 933
  • [39] POTENTIALS ON ABSTRACT WIENER SPACE
    CARMONA, R
    JOURNAL OF FUNCTIONAL ANALYSIS, 1977, 26 (03) : 215 - 231
  • [40] A Gowers tree like space and the space of its bounded linear operators
    Petsoulas, Giorgos
    Raikoftsalis, Theocharis
    STUDIA MATHEMATICA, 2009, 190 (03) : 233 - 281