Multi-region machine learning-based novel ensemble approaches for predicting COVID-19 pandemic in Africa

被引:9
|
作者
Ibrahim, Zurki [1 ]
Tulay, Pinar [1 ]
Abdullahi, Jazuli [2 ]
机构
[1] Near East Univ, Dept Med Genet, Mersin 10, Lefkosa, Turkey
[2] Baze Univ, Fac Engn, Dept Civil Engn, Abuja, Nigeria
关键词
COVID-19; Africa; Modelling; Machine learning; Pandemic; Ensemble approaches; SYSTEM;
D O I
10.1007/s11356-022-22373-6
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Coronavirus disease 2019 (COVID-19) has produced a global pandemic, which has devastating effects on health, economy and social interactions. Despite the less contraction and spread of COVID-19 in Africa compared to some other continents in the world, Africa remains amongst the most vulnerable regions due to less technology and unequipped or poor health system. Recent happenings showed that COVID-19 may stay for years owing to the discoveries of new variants (such as Omicron) and new wave of infections in several countries. Therefore, accurate prediction of new cases is vital to make informed decisions and in evaluating the measures that should be implemented. Studies on COVID-19 prediction are limited in Africa despite the risks and dangers that the virus possessed. Hence, this study was performed to predict daily COVID-19 cases in 10 African countries spread across the north, south, east, west and central Africa considering countries with few and large number of daily COVID-19 cases. Machine learning (ML) models due to their nonlinearity and accurate prediction capabilities were employed for this purpose, including artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM) and conventional multiple linear regression (MLR) models. As any other natural process, the COVID-19 pandemic may contain both linear and nonlinear aspects. In such circumstances, neither nonlinear (ML) nor linear (MLR) models could be sufficient; hence, combining both ML and MLR models may produce better accuracy. Consequently, to improve the prediction efficiency of the ML models, novel ensemble approaches including ANN-E and SVM-E were employed. The advantage of using ensemble approaches is that they provide collective benefits of all the standalone models, thereby reducing their weaknesses and enhancing their prediction capabilities. The obtained results showed that ANFIS led to better prediction performance with MAD = 0.0106, MSE = 0.0003, RMSE = 0.0185 and R-2 = 0.9059 in the validation step. The results of the proposed ensemble approaches demonstrated very high improvements in predicting the COVID-19 pandemic in Africa with MAD = 0.0073, MSE = 0.0002, RMSE = 0.0155 and R-2 = 0.9616. The ANN-E improved the standalone models performance in the validation step up to 10%, 14%, 42%, 6%, 83%, 11%, 7%, 5%, 7% and 31% for Morocco, Sudan, Namibia, South Africa, Uganda, Rwanda, Nigeria, Senegal, Gabon and Cameroon, respectively. This study results offer a solid foundation in the application of ensemble approaches for predicting COVID-19 pandemic across all regions and countries in the world.
引用
收藏
页码:3621 / 3643
页数:23
相关论文
共 50 条
  • [31] Predicting factors affecting the intention to use a 3PL during the COVID-19 pandemic: A machine learning ensemble approach
    German, Josephine D.
    Ong, Ardvin Kester S.
    Redi, Anak Agung Ngurah Perwira
    Robas, Kirstien Paola E.
    HELIYON, 2022, 8 (11)
  • [32] A Machine Learning-Based Web Tool for the Severity Prediction of COVID-19
    Christodoulou, Avgi
    Katsarou, Martha-Spyridoula
    Emmanouil, Christina
    Gavrielatos, Marios
    Georgiou, Dimitrios
    Tsolakou, Annia
    Papasavva, Maria
    Economou, Vasiliki
    Nanou, Vasiliki
    Nikolopoulos, Ioannis
    Daganou, Maria
    Argyraki, Aikaterini
    Stefanidis, Evaggelos
    Metaxas, Gerasimos
    Panagiotou, Emmanouil
    Michalopoulos, Ioannis
    Drakoulis, Nikolaos
    BIOTECH, 2024, 13 (03):
  • [33] An innovative ensemble model based on deep learning for predicting COVID-19 infection
    Su, Xiaoying
    Sun, Yanfeng
    Liu, Hongxi
    Lang, Qiuling
    Zhang, Yichen
    Zhang, Jiquan
    Wang, Chaoyong
    Chen, Yanan
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [34] An innovative ensemble model based on deep learning for predicting COVID-19 infection
    Xiaoying Su
    Yanfeng Sun
    Hongxi Liu
    Qiuling Lang
    Yichen Zhang
    Jiquan Zhang
    Chaoyong Wang
    Yanan Chen
    Scientific Reports, 13
  • [35] The COVID-19 pandemic: prediction study based on machine learning models
    Zohair Malki
    El-Sayed Atlam
    Ashraf Ewis
    Guesh Dagnew
    Osama A. Ghoneim
    Abdallah A. Mohamed
    Mohamed M. Abdel-Daim
    Ibrahim Gad
    Environmental Science and Pollution Research, 2021, 28 : 40496 - 40506
  • [36] Prediction method of the pandemic trend of COVID-19 based on machine learning
    Ren J.
    Cui Y.
    Ni S.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2023, 63 (06): : 1003 - 1011
  • [37] The COVID-19 pandemic: prediction study based on machine learning models
    Malki, Zohair
    Atlam, El-Sayed
    Ewis, Ashraf
    Dagnew, Guesh
    Ghoneim, Osama A.
    Mohamed, Abdallah A.
    Abdel-Daim, Mohamed M.
    Gad, Ibrahim
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (30) : 40496 - 40506
  • [38] Impact of the Covid-19 pandemic on the performance of machine learning algorithms for predicting perioperative mortality
    D. I. Andonov
    B. Ulm
    M. Graessner
    A. Podtschaske
    M. Blobner
    B. Jungwirth
    S. M. Kagerbauer
    BMC Medical Informatics and Decision Making, 23
  • [39] Predicting the Spread of a Pandemic Using Machine Learning: A Case Study of COVID-19 in the UAE
    Sankalpa, Donthi
    Dhou, Salam
    Pasquier, Michel
    Sagahyroon, Assim
    APPLIED SCIENCES-BASEL, 2024, 14 (10):
  • [40] Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing
    Tuli, Shreshth
    Tuli, Shikhar
    Tuli, Rakesh
    Gill, Sukhpal Singh
    INTERNET OF THINGS, 2020, 11