Multiply robust generalized estimating equations for cluster randomized trials with missing outcomes

被引:0
|
作者
Rabideau, Dustin J. [1 ,2 ]
Li, Fan [3 ,4 ]
Wang, Rui [5 ,6 ,7 ]
机构
[1] Massachusetts Gen Hosp, Biostat, 50 Staniford St, Boston, MA 02114 USA
[2] Harvard Med Sch, Dept Med, Boston, MA USA
[3] Yale Univ, Sch Publ Hlth, Dept Biostat, New Haven, CT USA
[4] Yale Univ, Ctr Methods Implementat & Prevent Sci, New Haven, CT USA
[5] Harvard Pilgrim Hlth Care Inst, Dept Populat Med, Boston, MA USA
[6] Harvard Med Sch, Boston, MA USA
[7] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
关键词
cluster randomized trial; generalized estimating equation; intracluster correlation coefficient; inverse probability weighting; missing data; multiple robustness; EMPIRICAL LIKELIHOOD; EFFICIENCY; IMPLEMENTATION;
D O I
10.1002/sim.10027
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Generalized estimating equations (GEEs) provide a useful framework for estimating marginal regression parameters based on data from cluster randomized trials (CRTs), but they can result in inaccurate parameter estimates when some outcomes are informatively missing. Existing techniques to handle missing outcomes in CRTs rely on correct specification of a propensity score model, a covariate-conditional mean outcome model, or require at least one of these two models to be correct, which can be challenging in practice. In this article, we develop new weighted GEEs to simultaneously estimate the marginal mean, scale, and correlation parameters in CRTs with missing outcomes, allowing for multiple propensity score models and multiple covariate-conditional mean models to be specified. The resulting estimators are consistent provided that any one of these models is correct. An iterative algorithm is provided for implementing this more robust estimator and practical considerations for specifying multiple models are discussed. We evaluate the performance of the proposed method through Monte Carlo simulations and apply the proposed multiply robust estimator to analyze the Botswana Combination Prevention Project, a large HIV prevention CRT designed to evaluate whether a combination of HIV-prevention measures can reduce HIV incidence.
引用
收藏
页码:1458 / 1474
页数:17
相关论文
共 50 条
  • [41] Nonparametric Regression With Missing Outcomes Using Weighted Kernel Estimating Equations
    Wang, Lu
    Rotnitzky, Andrea
    Lin, Xihong
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (491) : 1135 - 1146
  • [42] Robust inference for estimating equations with nonignorably missing data based on SIR algorithm
    Song, Yunquan
    Zhu, Yanji
    Wang, Xiuli
    Lin, Lu
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (17) : 3196 - 3212
  • [43] One-Step Generalized Estimating Equations With Large Cluster Sizes
    Lipsitz, Stuart
    Fitzmaurice, Garrett
    Sinha, Debajyoti
    Hevelone, Nathanael
    Hu, Jim
    Nguyen, Louis L.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (03) : 734 - 737
  • [44] USE OF GENERALIZED ESTIMATING EQUATIONS IN SEGREGATION ANALYSIS OF CONTINUOUS OUTCOMES
    STRM, DO
    LEE, H
    THOMAS, DC
    GENETIC EPIDEMIOLOGY, 1993, 10 (06) : 575 - 579
  • [45] Doubly Robust and Multiple-Imputation-Based Generalized Estimating Equations
    Birhanu, Teshome
    Molenberghs, Geert
    Sotto, Cristina
    Kenward, Michael G.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2011, 21 (02) : 202 - 225
  • [46] Statistical analysis and handling of missing data in cluster randomized trials: a systematic review
    Mallorie H. Fiero
    Shuang Huang
    Eyal Oren
    Melanie L. Bell
    Trials, 17
  • [47] Reweighted Mahalanobis distance matching for cluster-randomized trials with missing data
    Greevy, Robert A., Jr.
    Grijalva, Carlos G.
    Roumie, Christianne L.
    Beck, Cole
    Hung, Adriana M.
    Murff, Harvey J.
    Liu, Xulei
    Griffin, Marie R.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2012, 21 : 148 - 154
  • [48] Measures of between-cluster variability in cluster randomized trials with binary outcomes
    Thomson, Andrew
    Hayes, Richard
    Cousens, Simon
    STATISTICS IN MEDICINE, 2009, 28 (12) : 1739 - 1751
  • [49] Statistical analysis and handling of missing data in cluster randomized trials: a systematic review
    Fiero, Mallorie H.
    Huang, Shuang
    Oren, Eyal
    Bell, Melanie L.
    TRIALS, 2016, 17
  • [50] Power analysis for cluster randomized trials with binary outcomes modeled by generalized linear mixed-effects models
    Chen, T.
    Lu, N.
    Arora, J.
    Katz, I.
    Bossarte, R.
    He, H.
    Xia, Y.
    Zhang, H.
    Tu, X. M.
    JOURNAL OF APPLIED STATISTICS, 2016, 43 (06) : 1104 - 1118