Learning physical laws from observations of complex dynamics

被引:0
|
作者
Novoselov, Kostya S. [1 ]
Li, Qianxiao [1 ]
机构
[1] Natl Univ Singapore, Singapore, Singapore
来源
NATURE COMPUTATIONAL SCIENCE | 2024年 / 4卷 / 01期
关键词
D O I
10.1038/s43588-023-00590-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The laws of physics, formulated in a compact form, are elusive for complex dynamic phenomena. However, it is now shown that, using artificial intelligence constrained by the physical Onsager principle, a custom thermodynamic description of a complex system can be constructed from the observation of its dynamical behavior.
引用
收藏
页码:9 / 10
页数:2
相关论文
共 50 条
  • [11] Scaling laws of failure dynamics on complex networks
    Gergő Pál
    Zsuzsa Danku
    Attia Batool
    Viktória Kádár
    Naoki Yoshioka
    Nobuyasu Ito
    Géza Ódor
    Ferenc Kun
    Scientific Reports, 13
  • [12] Complex delay dynamics on railway networks from universal laws to realistic modelling
    Monechi, Bernardo
    Gravino, Pietro
    Di Clemente, Riccardo
    Servedio, Vito D. P.
    EPJ DATA SCIENCE, 2018, 7
  • [13] Complex delay dynamics on railway networks from universal laws to realistic modelling
    Bernardo Monechi
    Pietro Gravino
    Riccardo Di Clemente
    Vito D. P. Servedio
    EPJ Data Science, 7
  • [14] Imitation Learning from Observations by Minimizing Inverse Dynamics Disagreement
    Yang, Chao
    Ma, Xiaojian
    Huang, Wenbing
    Sun, Fuchun
    Liu, Huaping
    Huang, Junzhou
    Gan, Chuang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [15] Iterative Learning Control Laws with Full Dynamics
    Hladowski, Lukasz
    Chen, Yiyang
    Nowicka, Weronika
    Galkowski, Krzysztof
    Rogers, Eric
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 6369 - 6374
  • [16] Learning Conservation Laws in Unknown Quantum Dynamics
    Zhan, Yongtao
    Elben, Andreas
    Huang, Hsin-Yuan
    Tong, Yu
    PRX QUANTUM, 2024, 5 (01):
  • [17] Inferring the physical connectivity of complex networks from their functional dynamics
    Ta, Hung Xuan
    Yoon, Chang No
    Holm, Liisa
    Han, Seung Kee
    BMC SYSTEMS BIOLOGY, 2010, 4
  • [18] A causality-based learning approach for discovering the underlying dynamics of complex systems from partial observations with stochastic parameterization
    Chen, Nan
    Zhang, Yinling
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 449
  • [19] Clustering local laws of the dynamics of complex living systems
    Demin, S. A.
    Panischev, O. Yu
    Latypov, R. R.
    INTERNATIONAL CONFERENCE PHYSICA.SPB/2019, 2019, 1400
  • [20] Learning physical models that can respect conservation laws
    Hansen, Derek
    Maddix, Danielle C.
    Alizadeh, Shima
    Gupta, Gaurav
    Mahoney, Michael W.
    Physica D: Nonlinear Phenomena, 2024, 457