State of Charge and State of Health estimation in large lithium-ion battery packs

被引:5
|
作者
Bhaskar, Kiran [1 ]
Kumar, Ajith [2 ]
Bunce, James [2 ]
Pressman, Jacob [2 ]
Burkell, Neil [2 ]
Miller, Nathan [2 ]
Rahn, Christopher D. [1 ]
机构
[1] Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
[2] Wabtec Corp, Erie, PA 16531 USA
关键词
SOC ESTIMATION; KALMAN FILTER; MANAGEMENT-SYSTEMS; SENSOR BIAS; OF-CHARGE; OBSERVER;
D O I
10.23919/ACC55779.2023.10156326
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate, real-time state of charge (SoC) and state of health (SoH) estimation is essential for lithium-ion battery management systems to ensure safe and extended life of battery packs. For the large battery packs associated with battery electric locomotives and grid applications, computational efficiency is critical, especially for onboard implementation. This paper presents real-time SoC and batch least squares SoH and current sensor bias estimation using measured cell voltage and current from large battery packs. An online gradient-based SoH estimator, coupled with the online SoC estimator, provides real-time onboard health monitoring. The online and offline SoC-SoH algorithms are tested using data from a battery electric locomotive. The SoC-SoH estimation results show tightly clustered capacity, resistance, and current sensor bias estimates for an 11-cell module. The batch and online capacity estimates match to within 5% after the startup transients decay.
引用
收藏
页码:3075 / 3080
页数:6
相关论文
共 50 条
  • [31] An integrated online adaptive state of charge estimation approach of high-power lithium-ion battery packs
    Wang, Shunli
    Fernandez, Carlos
    Shang, Liping
    Li, Zhanfeng
    Yuan, Huifang
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2018, 40 (06) : 1892 - 1910
  • [32] Current and State of Charge Estimation of Lithium-Ion Battery Packs Using Distributed Fractional Extended Kalman Filters
    Kupper, Martin
    Creutz, Andreas
    Stark, Oliver
    Krebs, Stefan
    Hohmann, Soeren
    2019 3RD IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (IEEE CCTA 2019), 2019, : 479 - 486
  • [33] Battery cell modeling and online estimation of the state of charge of a lithium-ion battery
    Tsai, I-Haur
    Yu, Kuan-Hsun
    Tseng, Alexander
    Yen, Jia-Yush
    Fu, Tseng-Ti
    Huang, Evan
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2018, 41 (05) : 412 - 418
  • [34] Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression
    Deng, Zhongwei
    Hu, Xiaosong
    Lin, Xianke
    Che, Yunhong
    Xu, Le
    Guo, Wenchao
    ENERGY, 2020, 205
  • [35] Review of state of health estimation for lithium-ion battery pack
    Liu D.
    Song Y.
    Wu W.
    Yang C.
    Peng Y.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2020, 41 (11): : 1 - 18
  • [36] An evolutionary framework for lithium-ion battery state of health estimation
    Cai, Lei
    Meng, Jinhao
    Stroe, Daniel-Ioan
    Luo, Guangzhao
    Teodorescu, Remus
    JOURNAL OF POWER SOURCES, 2019, 412 : 615 - 622
  • [37] A fast estimation algorithm for lithium-ion battery state of health
    Tang, Xiaopeng
    Zou, Changfu
    Yao, Ke
    Chen, Guohua
    Liu, Boyang
    He, Zhenwei
    Gao, Furong
    JOURNAL OF POWER SOURCES, 2018, 396 : 453 - 458
  • [38] Advanced Intelligent approach for state of charge estimation of lithium-ion battery
    Kumar, Deepak
    Rizwan, M.
    Panwar, Amrish K.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (04) : 10661 - 10681
  • [39] Transfer Learning Techniques for the Lithium-Ion Battery State of Charge Estimation
    Eleftheriadis, Panagiotis
    Giazitzis, Spyridon
    Leva, Sonia
    Ogliari, Emanuele
    IEEE ACCESS, 2024, 12 : 993 - 1004
  • [40] State-of-charge estimation and uncertainty for lithium-ion battery strings
    Truchot, Cyril
    Dubarry, Matthieu
    Liaw, Bor Yann
    APPLIED ENERGY, 2014, 119 : 218 - 227