Zinc porphyrin/g-C3N4 S-scheme photocatalyst for efficient H2O2 production

被引:61
|
作者
Xia, Yang [1 ,2 ]
Zhu, Bicheng [3 ]
Qin, Xing [1 ,2 ]
Ho, Wingkei [1 ,2 ,4 ]
Yu, Jiaguo [1 ,2 ,3 ]
机构
[1] Educ Univ Hong Kong, Dept Sci & Environm Studies, Tai Po, Hong Kong 999077, Peoples R China
[2] Educ Univ Hong Kong, Ctr Environm & Sustainable Dev CESD, Tai Po, Hong Kong 999077, Peoples R China
[3] China Univ Geosci, Fac Mat Sci & Chem, Lab Solar Fuel, Wuhan 430074, Peoples R China
[4] City Univ Hong Kong, State Key Lab Marine Pollut, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Photocatalysis; Zinc porphyrin; S-scheme; HYDROGEN-PEROXIDE; HETEROJUNCTION PHOTOCATALYST; CARBON NITRIDE; WATER; COCATALYST; ABILITY; G-C3N4; TIO2;
D O I
10.1016/j.cej.2023.143528
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Constructing heterojunction photocatalyst is a promising strategy to achieve solar-to-chemical energy conversion. Especially, the S-scheme heterojunction has received a great deal of attention because of its superiority of the efficient photogenerated charge carriers' separation and the strong photoredox capacity. Herein, an S-scheme heterojunction is designed and synthesized through grafting supramolecular Zinc porphyrin (Zn-TCPP) on g-C3N4 (CN) via -CONH- bridging bond for H2O2 production in the O2 atmosphere under a 300 W Xe lamp irradiation using ethanol as a sacrificial agent. As the optimal sample, Zn-TCPP/CN exhibits the highest H2O2 production rate with 532.7 mu mol/L within 90 min, which is 3.1 and 9.0 times higher than those of pure CN and Zn-TCPP, respectively. The route of H2O2 production in the photocatalytic process and the mechanism of activity enhancement are revealed by a systematic characterisation. Hence, the results of the radical trapping experiment and rotating disk electrode measurement demonstrate that the two-step single-electron route is the predominant reaction step in the process of H2O2 generation. In-situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) and Kelvin probe force microscopy (KPFM) technology provide strong evidence of the S-scheme charge transfer path between Zn-TCPP and CN, which greatly facilitates the spatial charge separation. Meanwhile, the density functional theory (DFT) calculations reveal that the strong interface interaction between Zn-TCPP and CN can induce the electron delocalization effect, thus restraining charge recombination. This work inspired the design of a high-active metalloporphyrin-based S-scheme heterojunction for energy conversion.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Study on TiO2/g-C3N4 S-Scheme heterojunction photocatalyst for enhanced formaldehyde decomposition
    Wu, Yihai
    Meng, Deqin
    Guo, Qingbin
    Gao, Dengzheng
    Wang, Li
    Optical Materials, 2022, 126
  • [32] DFT Study on S-Scheme g-C3N4/g-C3N4(P) Heterostructure Photocatalyst in Hydrogen Production Process by Photocatalytic Water Splitting
    Houmei Dai
    Xin Li
    Yanglai Hou
    Dongliang Wang
    Ran Wei
    Catalysis Letters, 2025, 155 (2)
  • [33] g-C3N4/α-Fe2O3 Supported Zero-Dimensional Co3S4 Nanoparticles Form S-Scheme Heterojunction Photocatalyst for Efficient Hydrogen Production
    Yan, Teng
    Liu, Hua
    Jin, Zhiliang
    ENERGY & FUELS, 2021, 35 (01) : 856 - 867
  • [34] G-C3N4/α-Fe2O3Supported Zero-Dimensional Co3S4Nanoparticles Form S-Scheme Heterojunction Photocatalyst for Efficient Hydrogen Production
    Yan, Teng
    Liu, Hua
    Jin, Zhiliang
    Energy and Fuels, 2021, 35 (01): : 856 - 867
  • [35] Enhanced Visible-Light H2O2 Production over Pt/g-C3N4 Schottky Junction Photocatalyst
    Nie, Longhui
    Chen, Heng
    Wang, Jing
    Yang, Yiqiong
    Fang, Caihong
    INORGANIC CHEMISTRY, 2024, 63 (10) : 4770 - 4782
  • [36] S-Scheme Heterojunction Photocatalysts for H2O2 Production
    Wang, Linxi
    Sun, Jian
    Cheng, Bei
    He, Rongan
    Yu, Jiaguo
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (20): : 4803 - 4814
  • [37] NiCo2O4/g-C3N4 Heterojunction Photocatalyst for Efficient H2 Generation
    Fan, Yanyun
    Chen, Hongmei
    Cui, Danfeng
    Fan, Zheng
    Xue, Chenyang
    ENERGY TECHNOLOGY, 2021, 9 (05)
  • [38] Dual S-Scheme Heterojunction CdS/TiO2/g-C3N4 Photocatalyst for Hydrogen Production and Dye Degradation Applications
    Shoaib, Muhammad
    Naz, Muhammad Yasin
    Shukrullah, Shazia
    Munir, Muhammad Adnan
    Irfan, Muhammad
    Rahman, Saifur
    Ghanim, Abdulnoor Ali Jazem
    ACS OMEGA, 2023, 8 (45): : 43139 - 43150
  • [39] ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium(VI) removal
    Dai, Zhongran
    Zhen, Yuan
    Sun, Yusu
    Li, Le
    Ding, Dexin
    CHEMICAL ENGINEERING JOURNAL, 2021, 415
  • [40] K-doped g-C3N4 decorated with Ti3C2 for efficient photocatalytic H2O2 production
    Zhou, Suyu
    Cheng, Shaoli
    Han, Junhe
    Huang, Mingju
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (41) : 19063 - 19076