Residual supersingular Iwasawa theory and signed Iwasawa invariants

被引:1
|
作者
Di Capriglio, Filippo A. E. Nuccio Mortarino Majno [1 ]
Ramdorai, Sujatha [2 ]
机构
[1] Univ Jean Monnet St Etienne, Inst Camille Jordan, CNRS, UMR 5208, F-42023 St Etienne, France
[2] Univ British Columbia Vancouver, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Iwasawa theory; elliptic curves; supersingular reduction; signed Selmer groups; FINE SELMER GROUPS; ELLIPTIC-CURVES; ABELIAN-VARIETIES; PRIMES; VALUES;
D O I
10.4171/RSMUP/111
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an odd prime p and a supersingular elliptic curve over a number field, this article introduces a multi-signed residual Selmer group, under certain hypotheses on the base field. This group depends purely on the residual representation at p, yet captures information about the Iwasawa theoretic invariants of the signed p1-Selmer group that arise in supersingular Iwasawa theory. Working in this residual setting provides a natural framework for studying congruences modulo p in Iwasawa theory.
引用
收藏
页码:83 / 129
页数:47
相关论文
共 50 条
  • [41] A note on Iwasawa µ-invariants of elliptic curves
    Rupam Barman
    Anupam Saikia
    Bulletin of the Brazilian Mathematical Society, New Series, 2010, 41 : 399 - 407
  • [42] TOPOLOGICAL IWASAWA INVARIANTS AND ARITHMETIC STATISTICS
    Dion, Cedric
    Ray, Anwesh
    DOCUMENTA MATHEMATICA, 2022, 27 : 1643 - 1669
  • [43] On the weak Leopoldt conjecture and Iwasawa μ-invariants
    Lee, Wan
    ACTA ARITHMETICA, 2019, 191 (01) : 81 - 93
  • [44] Bounding the Iwasawa invariants of Selmer groups
    Kleine, Soeren
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (05): : 1390 - 1422
  • [45] Local behavior of Iwasawa's invariants
    Kleine, Soeren
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (04) : 1013 - 1036
  • [46] A note on Iwasawa Aμ-invariants of elliptic curves
    Barman, Rupam
    Saikia, Anupam
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2010, 41 (03): : 399 - 407
  • [47] Iwasawa invariants for symmetric square representations
    Anwesh Ray
    R. Sujatha
    Vinayak Vatsal
    Research in the Mathematical Sciences, 2023, 10
  • [48] p-rigidity and Iwasawa μ-invariants
    Burungale, Ashay A.
    Hida, Haruzo
    ALGEBRA & NUMBER THEORY, 2017, 11 (08) : 1921 - 1951
  • [49] Euler characteristics as invariants of Iwasawa modules
    Howson, S
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 85 : 634 - 658
  • [50] On the Iwasawa invariants of the Γ-transform of a rational function
    Rosenberg, SJ
    JOURNAL OF NUMBER THEORY, 2004, 109 (01) : 89 - 95