Residual supersingular Iwasawa theory and signed Iwasawa invariants

被引:1
|
作者
Di Capriglio, Filippo A. E. Nuccio Mortarino Majno [1 ]
Ramdorai, Sujatha [2 ]
机构
[1] Univ Jean Monnet St Etienne, Inst Camille Jordan, CNRS, UMR 5208, F-42023 St Etienne, France
[2] Univ British Columbia Vancouver, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Iwasawa theory; elliptic curves; supersingular reduction; signed Selmer groups; FINE SELMER GROUPS; ELLIPTIC-CURVES; ABELIAN-VARIETIES; PRIMES; VALUES;
D O I
10.4171/RSMUP/111
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an odd prime p and a supersingular elliptic curve over a number field, this article introduces a multi-signed residual Selmer group, under certain hypotheses on the base field. This group depends purely on the residual representation at p, yet captures information about the Iwasawa theoretic invariants of the signed p1-Selmer group that arise in supersingular Iwasawa theory. Working in this residual setting provides a natural framework for studying congruences modulo p in Iwasawa theory.
引用
收藏
页码:83 / 129
页数:47
相关论文
共 50 条