Residual supersingular Iwasawa theory and signed Iwasawa invariants
被引:1
|
作者:
Di Capriglio, Filippo A. E. Nuccio Mortarino Majno
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jean Monnet St Etienne, Inst Camille Jordan, CNRS, UMR 5208, F-42023 St Etienne, FranceUniv Jean Monnet St Etienne, Inst Camille Jordan, CNRS, UMR 5208, F-42023 St Etienne, France
Di Capriglio, Filippo A. E. Nuccio Mortarino Majno
[1
]
Ramdorai, Sujatha
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia Vancouver, Dept Math, Vancouver, BC V6T 1Z2, CanadaUniv Jean Monnet St Etienne, Inst Camille Jordan, CNRS, UMR 5208, F-42023 St Etienne, France
Ramdorai, Sujatha
[2
]
机构:
[1] Univ Jean Monnet St Etienne, Inst Camille Jordan, CNRS, UMR 5208, F-42023 St Etienne, France
[2] Univ British Columbia Vancouver, Dept Math, Vancouver, BC V6T 1Z2, Canada
Iwasawa theory;
elliptic curves;
supersingular reduction;
signed Selmer groups;
FINE SELMER GROUPS;
ELLIPTIC-CURVES;
ABELIAN-VARIETIES;
PRIMES;
VALUES;
D O I:
10.4171/RSMUP/111
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
For an odd prime p and a supersingular elliptic curve over a number field, this article introduces a multi-signed residual Selmer group, under certain hypotheses on the base field. This group depends purely on the residual representation at p, yet captures information about the Iwasawa theoretic invariants of the signed p1-Selmer group that arise in supersingular Iwasawa theory. Working in this residual setting provides a natural framework for studying congruences modulo p in Iwasawa theory.
机构:
Univ British Columbia, Dept Math, Room 121,1984 Math Rd, Vancouver, BC V6T 1Z2, CanadaUniv British Columbia, Dept Math, Room 121,1984 Math Rd, Vancouver, BC V6T 1Z2, Canada