A LINESEARCH PROJECTION ALGORITHM FOR SOLVING EQUILIBRIUM PROBLEMS WITHOUT MONOTONICITY IN HILBERT SPACES

被引:0
|
作者
Deng, Lanmei [1 ,2 ]
Hu, Rong [3 ]
Fang, Yaping [1 ]
机构
[1] Sichuan Univ, Coll Math, Chengdu, Sichuan, Peoples R China
[2] Sichuan Agr Univ, Dept Foundat Courses, Dujiangyan Campus, Chengdu, Sichuan, Peoples R China
[3] Chengdu Univ Informat Technol, Dept Appl Math, Chengdu, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonmonotone equilibrium problem; Minty equilibrium problem; projection algorithm; Armijo-linesearch; strong convergence; PROXIMAL POINT METHOD; EXTRAGRADIENT METHOD; STRONG-CONVERGENCE; VARIATIONAL-INEQUALITIES;
D O I
10.3934/jimo.2022144
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a linesearch projection algorithm for solving non-monotone and non-Lipschitzian equilibrium problems in Hilbert spaces. It is proved that the sequence generated by the proposed algorithm converges strongly to a solution of the equilibrium problem under the assumption that the solution set of the associated Minty equilibrium problem is nonempty. Compared with existing methods, we do not employ Fejer monotonicity in the strategy of proving the convergence. This comes from projecting a fixed point instead of the current point onto a subset of the feasible set at each iteration. Moreover, employing an Armijo-linesearch without subgradient has a great advantage in CPU-time. Some numerical experiments demonstrate the efficiency and strength of the presented algorithm.
引用
下载
收藏
页码:4641 / 4662
页数:22
相关论文
共 50 条
  • [21] A New Linesearch Algorithm for Split Equilibrium Problems
    Tadchai Yuying
    Somyot Plubtieng
    Acta Mathematica Vietnamica, 2020, 45 : 397 - 409
  • [22] Shrinking projection methods for solving split equilibrium problems and fixed point problems for asymptotically nonexpansive mappings in Hilbert spaces
    Uamporn Witthayarat
    Afrah A N Abdou
    Yeol Je Cho
    Fixed Point Theory and Applications, 2015
  • [23] An outer approximation algorithm for equilibrium problems in Hilbert spaces
    Santos, P. S. M.
    Scheimberg, S.
    OPTIMIZATION METHODS & SOFTWARE, 2015, 30 (02): : 379 - 390
  • [24] A New Linesearch Algorithm for Split Equilibrium Problems
    Yuying, Tadchai
    Plubtieng, Somyot
    ACTA MATHEMATICA VIETNAMICA, 2020, 45 (02) : 397 - 409
  • [25] Convergence analysis for solving equilibrium problems and split feasibility problems in Hilbert spaces
    Li, Haiying
    Wu, Yulian
    Wang, Fenghui
    OPTIMIZATION, 2023, 72 (07) : 1863 - 1898
  • [26] On solving split best proximity point and equilibrium problems in Hilbert spaces
    Tiammee, Jukrapong
    Suantai, Suthep
    CARPATHIAN JOURNAL OF MATHEMATICS, 2019, 35 (03) : 385 - 392
  • [27] A SHRINKING PROJECTION APPROACH FOR SPLIT EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS IN HILBERT SPACES
    Khan, Muhammad Aqeel Ahmad
    Arfat, Yasir
    Butt, Asma Rashid
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (01): : 33 - 46
  • [28] PROJECTION METHODS WITH LINESEARCH TECHNIQUE FOR PSEUDOMONOTONE EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS
    Zhu, Li-Jun
    Yao, Yonghong
    Postolache, Mihai
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (01): : 3 - 14
  • [29] Projection methods with linesearch technique for pseudomonotone equilibrium problems and fixed point problems
    Zhu, Li-Jun
    Yao, Yonghong
    Postolache, Mihai
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2021, 83 (01): : 3 - 14
  • [30] Solving Common Nonmonotone Equilibrium Problems Using a Parallel Inertial Type Algorithm with Armijo Linesearch
    Kankam, Kunrada
    Wongjak, Wanida
    Kotcharerg, Jirapa
    Cholamjiak, Watcharaporn
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (03): : 1096 - 1111