Flexural performance of glulam strengthened with flax-fiber reinforced polymer composites

被引:1
|
作者
Di, Jing [1 ]
Zuo, Hongliang [1 ]
Li, Yishi [1 ]
机构
[1] Northeast Forestry Univ, Sch Civil Engn, Harbin 150040, Peoples R China
关键词
Flexural strengthening; four-point bending test; theoretical calculation model; cost analysis; LAMINATED TIMBER BEAMS; WOOD BEAMS; NUMERICAL-ANALYSIS; BEHAVIOR; ENHANCEMENT; DUCTILITY; GFRP; FRP;
D O I
10.1080/17480272.2022.2101940
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Glulam is a construction material widely used all over the world. Common glulam often exhibits brittle damage under bending loads due to natural defects in the wood, which results in low load-bearing arid deformation capacities. To improve the flexural performance of glulam beams, a new type of glulam longitudinally strengthened with flax-fiber reinforced polymer (FFRP) composites is proposed. Eighteen full-scale timber beams with and without FFRP were tested, where the bonding length and the bonding layers of the FFRP are varied for FFRP strengthened beams. Results demonstrate that the flexural performance of strengthened beams improves significantly with increasing bonding length. The number of layers of FFRP had a minor effect on the flexural performance when the bonding length was 2700 mm. Moreover, the reliability of load capacity of beams can be improved by bonding FFRP with lengths over 1400 mm. A theoretical calculation predicts the ultimate flexural capacity of the strengthened beam, and exhibits good agreement with the experimental results. Finally, a cost analysis is made to evaluate the economics of various reinforcement methods, indicating that three-layer FFRP of 2700 mm strengthening length significantly increases the flexural performance at lower cost than other strengthened types.
引用
收藏
页码:1014 / 1023
页数:10
相关论文
共 50 条
  • [41] Flexural behavior of timber beams strengthened with pultruded glass fiber reinforced polymer profiles
    Shekarchi, Mohammad
    Oskouei, Asghar Vatani
    Raftery, Gary M.
    COMPOSITE STRUCTURES, 2020, 241
  • [42] Tensile and flexural properties of natural fiber reinforced polymer composites: A review
    Khan, Mohammad Z. R.
    Srivastava, Sunil K.
    Gupta, M. K.
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2018, 37 (24) : 1435 - 1455
  • [43] Microstructure, flexural properties and durability of coir fibre reinforced concrete beams externally strengthened with flax FRP composites
    Yan, Libo
    Su, Shen
    Chouw, Nawawi
    COMPOSITES PART B-ENGINEERING, 2015, 80 : 343 - 354
  • [44] Electrochemical performance of corroded reinforced concrete columns strengthened with fiber reinforced polymer
    Liang, Hongjun
    Li, Shan
    Lu, Yiyan
    Hu, Jiyue
    Liu, Zhenzhen
    COMPOSITE STRUCTURES, 2019, 207 : 576 - 588
  • [45] Performance of Reinforced Concrete Beams Strengthened with Carbon Fiber Reinforced Polymer Strips
    Haroon, Muhammad
    Moon, Jae Sang
    Kim, Changhyuk
    MATERIALS, 2021, 14 (19)
  • [46] Model of the mechanical response of short flax fiber reinforced polymer matrix composites
    Modniks, J.
    Joffe, R.
    Andersons, J.
    11TH INTERNATIONAL CONFERENCE ON THE MECHANICAL BEHAVIOR OF MATERIALS (ICM11), 2011, 10
  • [47] Predicting the flexural performance of woven flax reinforced epoxy composites using design of experiments
    Koronis, G.
    Silva, A.
    Foong, S.
    MATERIALS TODAY COMMUNICATIONS, 2017, 13 : 317 - 324
  • [48] Structural Performance of Polymer Fiber Reinforced Engineered Cementitious Composites Subjected to Static and Fatigue Flexural Loading
    Sherir, Mohamed A. A.
    Hossain, Khandaker M. A.
    Lachemi, Mohamed
    POLYMERS, 2015, 7 (07) : 1299 - 1330
  • [49] Fabrication and multi-aspect characterization of polymer composite reinforced with differently stacked flax-fiber and steel-wire meshes
    Bhoi, Subham Kumar
    Satapathy, Alok
    JOURNAL OF ELASTOMERS AND PLASTICS, 2025, 57 (03): : 382 - 403
  • [50] Torsional behavior of RC beams strengthened with carbon fiber reinforced polymer composites
    Silva, Leandro Ferreira
    Sanchez Filho, Emil de Souza
    Silva Filho, Julio Jeronimo Holtz
    ADVANCES IN STRUCTURAL ENGINEERING, 2021, 24 (09) : 2027 - 2041