On the AVDTC of Sierpiński-type graphs☆

被引:0
|
作者
Palma, Miguel A. D. R. [1 ]
Leon, Adriana J. [2 ,3 ]
Dantas, Simone [1 ]
机构
[1] Univ Fed Fluminense, IME, Niteroi, Brazil
[2] Univ Fed Minas Gerais, ICEx, Dept Matemat, Belo Horizonte, Brazil
[3] Univ Estado Rio De Janeiro, Dept Matemat, FFP, Rio De Janeiro, Brazil
关键词
Adjacent-vertex-distinguishing total; coloring; Total coloring; Sierpinski graphs; Sierpinski triangle graphs; COLORINGS; NUMBERS; POWERS;
D O I
10.1016/j.dam.2023.11.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Adjacent-Vertex-Distinguishing Total Coloring (AVDTC) conjecture asserts that every simple graph can be colored with an AVDTC using at most increment + 3 colors. We show that this conjecture is satisfied for all the Sierpinski graphs Spn, their regularizations +Spn and ++Spn and the fractals obtained as limit space of these graphs. Moreover, we construct explicit total colorings (with at most increment + 2 colors) for Sierpinski triangles graphs STpn and Sierpinski triangle fractal with the limit space STp infinity, for p is an element of {3, 4, 5, 6}, and prove that the AVDTC conjecture is also valid for these cases. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:10 / 29
页数:20
相关论文
共 50 条
  • [21] Global Strong Defensive Alliances of Sierpiński-Like Graphs
    Chien-Hung Lin
    Jia-Jie Liu
    Yue-Li Wang
    [J]. Theory of Computing Systems, 2013, 53 : 365 - 385
  • [22] On a problem of Sierpiński,Ⅱ
    CHEN YongGao
    FANG JinHui
    [J]. Science China Mathematics, 2014, 57 (12) : 2519 - 2524
  • [23] The Outer-connected Domination Number of Sierpiński-like Graphs
    Shun-Chieh Chang
    Jia-Jie Liu
    Yue-Li Wang
    [J]. Theory of Computing Systems, 2016, 58 : 345 - 356
  • [24] Torque and Contact Force Analysis of Ski-Type Walking for Humanoid Robots
    Wang, Hongfei
    Zheng, Yuan F.
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON TECHNOLOGIES FOR PRACTICAL ROBOT APPLICATIONS (TEPRA), 2015,
  • [25] On a problem of Sierpiński, II
    YongGao Chen
    JinHui Fang
    [J]. Science China Mathematics, 2014, 57 : 2519 - 2524
  • [26] GENERALIZED SIERPIŃSKI NUMBERS
    Filaseta, Michael
    Groth, Robert
    Luckner, Thomas
    [J]. COLLOQUIUM MATHEMATICUM, 2023,
  • [27] On two theorems of Sierpiński
    Edward Grzegorek
    Iwo Labuda
    [J]. Archiv der Mathematik, 2018, 110 : 637 - 644
  • [28] Ski-Type Self-Balance Biped Walking for Rough Terrain
    Wang, Hongfei
    Li, Shimeng
    Zheng, Yuan F.
    Kim, Taegoo
    Oh, Paul
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 3452 - 3457
  • [29] Monitoring-edge-geodetic numbers of radix triangular mesh and Sierpiński graphs
    Ma, Rongrong
    Ji, Zhen
    Yao, Yifan
    Lei, Yalong
    [J]. INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS, 2024, 39 (03) : 353 - 361
  • [30] On the effective diffusion in the Sierpiński carpet
    C. G. Aguilar-Madera
    E. C. Herrera-Hernández
    G. Espinosa-Paredes
    J. A. Briones-Carrillo
    [J]. Computational Geosciences, 2021, 25 : 467 - 473