An implicit nonlinear difference scheme for two-dimensional time-fractional Burgers' equation with time delay

被引:4
|
作者
Xiao, Mingcong [1 ]
Wang, Zhibo [1 ]
Mo, Yan [1 ]
机构
[1] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Two-dimensional time-fractional Burgers' equation; Time-delay; Implicit difference scheme; Stability and convergence; DIFFUSION-EQUATIONS; WAVE SOLUTIONS; HUXLEY; FORMS;
D O I
10.1007/s12190-023-01863-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the L1 discretization for the Caputo fractional derivative, a fully implicit nonlinear difference scheme with (2 - a)-th order accuracy in time and second-order accuracy in space is proposed to solve the two-dimensional time fractional Burgers' equation with time delay, where a ? (0,1) is the fractional order. The existence of the numerical scheme is studied by the Browder fixed point theorem. Furthermore, with the help of a fractional Gronwall inequality, the constructed scheme is verified to be unconditionally stable and convergent in L-2 norm by using the energy method. Finally, a numerical example is given to illustrate the correctness of our theoretical analysis.
引用
收藏
页码:2919 / 2934
页数:16
相关论文
共 50 条
  • [11] Solution of two-dimensional time-fractional Burgers equation with high and low Reynolds numbers
    Wen Cao
    Qinwu Xu
    Zhoushun Zheng
    Advances in Difference Equations, 2017
  • [12] Solution of two-dimensional time-fractional Burgers equation with high and low Reynolds numbers
    Cao, Wen
    Xu, Qinwu
    Zheng, Zhoushun
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [13] Additive Difference Scheme for Two-Dimensional Fractional in Time Diffusion Equation
    Hodzic-Zivanovic, Sandra
    Jovanovic, Bosko S.
    FILOMAT, 2017, 31 (02) : 217 - 226
  • [14] An ADI compact difference scheme for the two-dimensional semilinear time-fractional mobile-immobile equation
    Jiang, Huifa
    Xu, Da
    Qiu, Wenlin
    Zhou, Jun
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04):
  • [15] A Parallel Algorithm for the Two-Dimensional Time Fractional Diffusion Equation with Implicit Difference Method
    Gong, Chunye
    Bao, Weimin
    Tang, Guojian
    Jiang, Yuewen
    Liu, Jie
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [16] Implicit difference approximation for the two-dimensional space-time fractional diffusion equation
    Zhuang P.
    Liu F.
    Journal of Applied Mathematics and Computing, 2007, 25 (1-2) : 269 - 282
  • [17] An efficient difference scheme for time-fractional KdV equation
    Xing, Zhiyong
    Wen, Liping
    Wang, Wansheng
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (08):
  • [18] An efficient difference scheme for time-fractional KdV equation
    Zhiyong Xing
    Liping Wen
    Wansheng Wang
    Computational and Applied Mathematics, 2021, 40
  • [19] An accurate, robust, and efficient finite difference scheme with graded meshes for the time-fractional Burgers' equation
    Qiao, Leijie
    Tang, Bo
    APPLIED MATHEMATICS LETTERS, 2022, 128
  • [20] An efficient alternating direction implicit finite difference scheme for the three-dimensional time-fractional telegraph equation
    Yang, Xuehua
    Qiu, Wenlin
    Zhang, Haixiang
    Tang, Liang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 102 : 233 - 247