A deep generative framework for data-driven surrogate modeling and visualization of parameterized nonlinear dynamical systems

被引:4
|
作者
Li, Shanwu [1 ]
Yang, Yongchao [1 ]
机构
[1] Michigan Technol Univ, Dept Mech Engn Engn Mech, Houghton, MI 49931 USA
关键词
Parameterized nonlinear dynamical system; Surrogate model; Deep generative learning; Deep image synthesis; RESPONSE-SURFACE APPROXIMATIONS; PROPER ORTHOGONAL DECOMPOSITION; FEEDFORWARD NEURAL-NETWORKS; ORDER REDUCTION; OPTIMIZATION; SPACES;
D O I
10.1007/s11071-023-08391-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Nonlinear dynamical systems in applications such as design and control typically depend on a set of variable parameters that represent system geometry, boundary conditions, material properties, etc. Such a parameterized dynamical system requires a parameterized model (e.g., a parameterized differential equation) to describe. On the one hand, to discover the wide variety of the parameter-dependent dynamical behaviors, repeated simulations with the parameterized model are often required over a large range of parameter values, leading to significant computational burdens especially when the system is complex (strongly nonlinear and/or high-dimensional) and the high-fidelity model is inefficient to simulate. Thus, seeking surrogate models that mimic the behaviors of high-fidelity parameterized models while being efficient to simulate is critically needed. On the other hand, the governing equations of the parameterized nonlinear dynamical system (e.g., an aerodynamic system with a physical model (full-scale or scaled in the laboratory) for optimization or design tasks) may be unknown or partially unknown due to insufficient physics knowledge, leading to an inverse problem where we need to identify the models from measurement data only. Accordingly, this work presents a novel deep generative framework for data-driven surrogate modeling/identification of parameterized nonlinear dynamical systems from data only. Specifically, the presented framework learns the direct mapping from simulation parameters to visualization images of dynamical systems by leveraging deep generative convolutional neural networks, yielding two advantages: (i) the surrogate simulation is efficient because the calculation of transient dynamics over time is circumvented; (ii) the surrogate output retains characterizing ability and flexibility as the visualization image is customizable and supports any visualization scheme for revealing and representing high-level dynamics feature (e.g., Poincare map). We study and demonstrate the framework on Lorenz system, forced pendulum system, and forced Duffing system. We present and discuss the prediction performance of the obtained surrogate models. It is observed that the obtained model has promising performance on capturing the sensitive parameter dependence of the nonlinear dynamical behaviors even when the bifurcation occurs. We also discuss in detail the limitation of this work and potential future work.
引用
收藏
页码:10287 / 10307
页数:21
相关论文
共 50 条
  • [21] Hierarchical deep learning for data-driven identification of reduced-order models of nonlinear dynamical systems
    Shanwu Li
    Yongchao Yang
    Nonlinear Dynamics, 2021, 105 : 3409 - 3422
  • [22] Data-Driven Method for Response Control of Nonlinear Random Dynamical Systems
    Tian, Yanping
    Jin, Xiaoling
    Wu, Lingling
    Yang, Ying
    Wang, Yong
    Huang, Zhilong
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2021, 88 (04):
  • [23] Data-driven linearization of dynamical systems
    Haller, George
    Kaszas, Balint
    NONLINEAR DYNAMICS, 2024, 112 (21) : 18639 - 18663
  • [24] An automated toolchain for the data-driven and dynamical modeling of combined sewer systems
    Troutman, Sara C.
    Schambach, Nathaniel
    Love, Nancy G.
    Kerkez, Branko
    WATER RESEARCH, 2017, 126 : 88 - 100
  • [25] Online data-driven fuzzy modeling for nonlinear dynamic systems
    Hao, WJ
    Qiang, WY
    Chai, QX
    Tang, JL
    Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, 2005, : 2634 - 2639
  • [26] Data-driven modeling for the dynamic behavior of nonlinear vibratory systems
    Liu, Huizhen
    Zhao, Chengying
    Huang, Xianzhen
    Yao, Guo
    NONLINEAR DYNAMICS, 2023, 111 (12) : 10809 - 10834
  • [27] Data-driven modeling for the dynamic behavior of nonlinear vibratory systems
    Huizhen Liu
    Chengying Zhao
    Xianzhen Huang
    Guo Yao
    Nonlinear Dynamics, 2023, 111 : 10809 - 10834
  • [28] Optimized Deep Learning Framework for water Distribution Data-Driven Modeling
    Wu, Zheng Yi
    Rahman, Atiqur
    XVIII INTERNATIONAL CONFERENCE ON WATER DISTRIBUTION SYSTEMS, WDSA2016, 2017, 186 : 261 - 268
  • [29] Data-driven decision-focused surrogate modeling
    Gupta, Rishabh
    Zhang, Qi
    AICHE JOURNAL, 2024, 70 (04)
  • [30] Data-driven surrogate modeling and benchmarking for process equipment
    Goncalves, Gabriel F. N.
    Batchvarov, Assen
    Liu, Yuyi
    Liu, Yuxin
    Mason, Lachlan R.
    Pan, Indranil
    Matar, Omar K.
    DATA-CENTRIC ENGINEERING, 2020, 1 (05):