MACHINE LEARNING BASED EVENT RECONSTRUCTION FOR THE MUONE EXPERIMENT

被引:0
|
作者
Zdybal, Mi losz [1 ]
Kucharczyk, Marcin [1 ]
Wolter, Marcin [1 ]
机构
[1] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland
来源
COMPUTER SCIENCE-AGH | 2024年 / 25卷 / 01期
关键词
machine learning; artificial neural networks; track reconstruction; high energy physics;
D O I
10.7494/csci.2024.25.1.5690
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A proof-of-concept solution based on the machine learning techniques has been implemented and tested within the MUonE experiment designed to search for New Physics in the sector of anomalous magnetic moment of a muon. The results of the DNN based algorithm are comparable to the classical reconstruction, reducing enormously the execution time for the pattern recognition phase. The present implementation meets the conditions of classical reconstruction, providing an advantageous basis for further studies.
引用
收藏
页码:25 / 46
页数:22
相关论文
共 50 条
  • [31] Resolution of English Event Pronouns Based on Machine Learning
    Qiu, Lu
    Feng, Wei
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [32] Neutral pion reconstruction using machine learning in the experiment at ⟨Eν⟩ ∼ 6 GeV
    Ghosh, A.
    Yaeggy, B.
    Galindo, R.
    Dar, Z. Ahmad
    Akbar, F.
    Ascencio, M., V
    Bashyal, A.
    Bercellie, A.
    Bonilla, J. L.
    Caceres, G.
    Cai, T.
    Carneiro, M. F.
    da Motta, H.
    Diaz, G. A.
    Felix, J.
    Filkins, A.
    Fine, R.
    Gago, A. M.
    Golan, T.
    Gran, R.
    Harris, D. A.
    Henry, S.
    Jena, S.
    Jena, D.
    Kleykamp, J.
    Kordosky, M.
    Last, D.
    Le, T.
    Lozano, A.
    Lu, X-G
    Maher, E.
    Manly, S.
    Mann, W. A.
    Mauger, C.
    McFarland, K. S.
    Messerly, B.
    Miller, J.
    Montano, L. M.
    Naples, D.
    Nelson, J. K.
    Nguyen, C.
    Olivier, A.
    Paolone, V
    Perdue, G. N.
    Ramirez, M. A.
    Ray, H.
    Ruterbories, D.
    Solano Salinas, C. J.
    Su, H.
    Sultana, M.
    JOURNAL OF INSTRUMENTATION, 2021, 16 (07)
  • [33] Probing the Lμ - Lτ gauge boson at the MUonE experiment
    Asai, Kento
    Hamaguchi, Koichi
    Nagata, Natsumi
    Tseng, Shih-Yen
    Wada, Juntaro
    PHYSICAL REVIEW D, 2022, 106 (05)
  • [35] Machine Learning-Based Hurricane Wind Reconstruction
    Yang, Qidong
    Lee, Chia-Ying
    Tippett, Michael K.
    Chavas, Daniel R.
    Knutson, Thomas R.
    WEATHER AND FORECASTING, 2022, 37 (04) : 477 - 493
  • [36] Event reconstruction and physics performance of the LHCb experiment
    Xie, Yuehong
    Hadron Collider Physics 2005, Proceedings, 2006, 108 : 242 - 247
  • [37] BESIII track reconstruction algorithm based on machine learning
    Jia, Xiaoqian
    Qin, Xiaoshuai
    Li, Teng
    Huang, Xingtao
    Zhang, Xueyao
    Yin, Na
    Zhang, Yao
    Yuan, Ye
    26TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS, CHEP 2023, 2024, 295
  • [38] Machine Learning Based Source Reconstruction for RF Desense
    Huang, Qiaolei
    Fan, Jun
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2018, 60 (06) : 1640 - 1647
  • [39] Event Reconstruction in the Tracking System of the CBM Experiment
    Friese, Volker
    MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS 2019 (MMCP 2019), 2020, 226
  • [40] Event Reconstruction and Simulation in PandaRoot for the PANDA Experiment
    Steinschaden, D.
    18TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2017), 2018, 1085