Exponentially fitted IMEX peer methods for an advection-diffusion problem

被引:0
|
作者
Conte, Dajana [1 ]
Moradi, Leila [1 ]
Paternoster, Beatrice [1 ]
机构
[1] Univ Salerno, I-84084 Salerno, Italy
来源
关键词
Advection-diffusion problems; EF IMEX peer methods; Boussinesq equation; Finite differences; RUNGE-KUTTA METHODS; IMPLICIT EXPLICIT METHODS; GENERAL LINEAR METHODS; 2-STEP PEER; NUMERICAL-SOLUTION; QUADRATURE-RULES; MULTISTEP METHODS; TIME-INTEGRATION; DISPERSION; STABILITY;
D O I
10.22034/cmde.2023.53247.2248
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, Implicit-Explicit (IMEX) Exponential Fitted (EF) peer methods are proposed for the numerical solution of an advection-diffusion problem exhibiting an oscillatory solution. Adapted numerical methods both in space and in time are constructed. The spatial semi-discretization of the problem is based on finite differences, adapted to both the diffusion and advection terms, while the time discretization employs EF IMEX peer methods. The accuracy and stability features of the proposed methods are analytically and numerically analyzed.
引用
收藏
页码:287 / 303
页数:17
相关论文
共 50 条
  • [21] A Robin-Robin preconditioner for an advection-diffusion problem
    Achdou, Y
    Nataf, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (11): : 1211 - 1216
  • [22] Moving Mesh Finite Element Methods for an Optimal Control Problem for the Advection-Diffusion Equation
    Konstantinos Chrysafinos
    Journal of Scientific Computing, 2005, 25 : 401 - 421
  • [23] Discontinuous Galerkin methods for magnetic advection-diffusion problems
    Wang, Jindong
    Wu, Shuonan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 174 : 43 - 54
  • [24] On stable and explicit numerical methods for the advection-diffusion equation
    Witek, Marcin L.
    Teixeira, Joao
    Flatau, Piotr J.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (03) : 561 - 570
  • [25] Single collocation point methods for the advection-diffusion equation
    Herrera, I
    Díaz-Viera, M
    Yates, R
    ADVANCES IN WATER RESOURCES, 2004, 27 (04) : 311 - 322
  • [26] Exponentially fitted two-step peer methods for oscillatory problems
    Dajana Conte
    Fakhrodin Mohammadi
    Leila Moradi
    Beatrice Paternoster
    Computational and Applied Mathematics, 2020, 39
  • [28] Exponentially fitted two-step peer methods for oscillatory problems
    Conte, Dajana
    Mohammadi, Fakhrodin
    Moradi, Leila
    Paternoster, Beatrice
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [29] ASYMPTOTIC ANALYSIS OF THE STEADY ADVECTION-DIFFUSION PROBLEM IN AXIAL DOMAINS
    Morales, Fernando A.
    OPUSCULA MATHEMATICA, 2023, 43 (02) : 199 - 220
  • [30] Plain Galerkin schemes that work well for the advection-diffusion problem
    Bottasso, CL
    Detomi, D
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 853 - 857