Human Bone Marrow Mesenchymal Stem Cells Promote the M2 Phenotype in Macrophages Derived from STEMI Patients

被引:2
|
作者
Cortes-Morales, Victor Adrian [1 ]
Vazquez-Gonzalez, Wendy Guadalupe [2 ]
Montesinos, Juan Jose [3 ]
Moreno-Ruiz, Luis [4 ]
Salgado-Pastor, Selene [4 ]
Salinas-Arreola, Pamela Michelle [2 ]
Diaz-Duarte, Karla [2 ]
Chavez-Rueda, Adriana Karina [5 ]
Chavez-Sanchez, Luis [2 ,5 ]
机构
[1] Inst Mexicano Seguro Social, Hosp Especial, Ctr Med Nacl Siglo XXI, Unidad Invest Med Inmunoquim, Mexico City 06720, Mexico
[2] Inst Mexicano Seguro Social, Unidad Invest Med Enfermedades Metab, Ctr Med Nacl Siglo XXI, Hosp Cardiol, Mexico City 06720, Mexico
[3] Inst Mexicano Seguro Social, Hosp Oncol, Ctr Med Nacl Siglo XXI, Unidad Invest Med Enfermedades Oncol, Mexico City 06720, Mexico
[4] Inst Mexicano Seguro Social, Hosp Cardiol, Ctr Med Nacl Siglo XXI, Div Cardiol, Mexico City 06720, Mexico
[5] Inst Mexicano Seguro Social, Hosp Pediat, Ctr Med Nacl Siglo XXI, Unidad Invest Med Inmunol, Mexico City 06720, Mexico
关键词
acute ST-elevation myocardial infarction; bone marrow mesenchymal stem/stromal cells; M1; macrophages; M2; regulatory T-cells; REGULATORY T-CELLS; STROMAL CELLS; INFLAMMATORY MACROPHAGES; POLARIZATION; MONOCYTES; DIFFERENTIATION; INJURY; M1;
D O I
10.3390/ijms242216257
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Acute ST-elevation myocardial infarction (STEMI) leads to myocardial injury or necrosis, and M1 macrophages play an important role in the inflammatory response. Bone marrow mesenchymal stem/stromal cells (BM-MSCs) are capable of modulating macrophage plasticity, principally due to their immunoregulatory capacity. In the present study, we analyzed the capacity of MSCs to modulate macrophages derived from monocytes from patients with STEMI. We analyzed the circulating levels of cytokines associated with M1 and M2 macrophages in patients with STEMI, and the levels of cytokines associated with M1 macrophages were significantly higher in patients with STEMI than in controls. BM-MSCs facilitate the generation of M1 and M2 macrophages. M1 macrophages cocultured with MSCs did not have decreased M1 marker expression, but these macrophages had an increased expression of markers of the M2 macrophage phenotype (CD14, CD163 and CD206) and IL-10 and IL-1Ra signaling-induced regulatory T cells (Tregs). M2 macrophages from patients with STEMI had an increased expression of M2 phenotypic markers in coculture with BM-MSCs, as well as an increased secretion of anti-inflammatory cytokines and an increased generation of Tregs. The findings in this study indicate that BM-MSCs have the ability to modulate the M1 macrophage response, which could improve cardiac tissue damage in patients with STEMI.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] In vitro chondrogenic phenotype differentiation of bone marrow-derived mesenchymal stem cells
    Zhang Yufu
    Wang Changyong
    Liao Wen
    Li Zhanghua
    Guo Ximin
    Zhao Qiang
    Duan Cuimi
    Xia Renyun
    Current Medical Science, 2004, 24 (3) : 275 - 278
  • [32] Comparison of Immunological Characteristics of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells and Bone Marrow
    Fu, Xin
    Chen, Yao
    Xie, Fang-Nan
    Dong, Ping
    Liu, Wen-bo
    Cao, Yilin
    Zhang, Wen-Jie
    Xiao, Ran
    TISSUE ENGINEERING PART A, 2015, 21 (3-4) : 616 - 626
  • [33] Human Amnion-Derived Mesenchymal Stem Cells Promote Osteogenic Differentiation in Human Bone Marrow Mesenchymal Stem Cells by Influencing the ERK1/2 Signaling Pathway
    Wang, Yuli
    Jiang, Fei
    Liang, Yi
    Shen, Ming
    Chen, Ning
    STEM CELLS INTERNATIONAL, 2016, 2016
  • [34] Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model
    Bian, Suyan
    Zhang, Liping
    Duan, Liufa
    Wang, Xi
    Min, Ying
    Yu, Hepeng
    JOURNAL OF MOLECULAR MEDICINE-JMM, 2014, 92 (04): : 387 - 397
  • [35] Exosomes Derived from Human Bone Marrow Mesenchymal Stem Cells Promote Tumor Growth Through Hedgehog Signaling Pathway
    Qi, Jin
    Zhou, Yali
    Jiao, Zuoyi
    Wang, Xu
    Zhao, Yang
    Li, Yangbin
    Chen, Huijuan
    Yang, Luxi
    Zhu, Hongwen
    Li, Yumin
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2017, 42 (06) : 2242 - 2254
  • [36] Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model
    Suyan Bian
    Liping Zhang
    Liufa Duan
    Xi Wang
    Ying Min
    Hepeng Yu
    Journal of Molecular Medicine, 2014, 92 : 387 - 397
  • [37] Human Gingiva-Derived Mesenchymal Stem Cells Elicit Polarization of M2 Macrophages and Enhance Cutaneous Wound Healing
    Zhang, Qun-Zhou
    Su, Wen-Ru
    Shi, Shi-Hong
    Wilder-Smith, Petra
    Xiang, Andy Peng
    Wong, Alex
    Nguyen, Andrew L.
    Kwon, Chan Wook
    Le, Anh D.
    STEM CELLS, 2010, 28 (10) : 1856 - 1868
  • [38] Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Encapsulated in M2 Macrophage Cell Membrane Targeted to Inhibit Joint Periprosthetic Inflammation
    Zhang, Zheyu
    Ma, Tianliang
    Liu, Qimeng
    Nan, Jiangyu
    Liu, Guanzhi
    Yang, Yute
    Hu, Yihe
    Xie, Jie
    ACS APPLIED MATERIALS & INTERFACES, 2025,
  • [39] Induction of Fracture Repair by Mesenchymal Cells Derived from Human Embryonic Stem Cells or Bone Marrow
    Undale, Anita
    Fraser, Daniel
    Hefferan, Theresa
    Kopher, Ross A.
    Herrick, James
    Evans, Glenda L.
    Li, Xiaodong
    Kakar, Sanjeev
    Hayes, Meredith
    Atkinson, Elizabeth
    Yaszemski, Michael J.
    Kaufman, Dan S.
    Westendorf, Jennifer J.
    Khosla, Sundeep
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2011, 29 (12) : 1804 - 1811
  • [40] BONE MARROW DERIVED MESENCHYMAL STEM CELLS AND AGING
    Gala, Kamila
    Burdzinska, Anna
    Paczek, Leszek
    POSTEPY BIOLOGII KOMORKI, 2010, 37 (01) : 89 - 106