MECBench: A Framework for Benchmarking Multi-Access Edge Computing Platforms

被引:0
|
作者
Naman, Omar [1 ]
Qadi, Hala [1 ]
Karsten, Martin [1 ]
Al-Kiswany, Samer [1 ,2 ]
机构
[1] Univ Waterloo, Waterloo, ON, Canada
[2] Acronis Res, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1109/EDGE60047.2023.00024
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present MECBench, an extensible benchmarking framework for multi-access edge computing. MECBench is configurable, and can emulate networks with different capabilities and conditions, can scale the generated workloads to mimic a large number of clients, and can generate a range of workload patterns. MECBench is extensible; it can be extended to change the generated workload, use new datasets, and integrate new applications. MECBench's implementation includes machine learning and synthetic edge applications. We demonstrate MECBench's capabilities through two scenarios: an object detection scheme for drone navigation and a natural language processing application. Our evaluation shows that MECBench can be used to answer complex what-if questions pertaining to design and deployment decisions of MEC platforms and applications. Our evaluation explores the impact of different combinations of applications, hardware, and network conditions, as well as the cost-benefit tradeoff of different designs and configurations.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 50 条
  • [21] UNMANNED AERIAL VEHICLES AND MULTI-ACCESS EDGE COMPUTING
    Qian, Yi
    IEEE WIRELESS COMMUNICATIONS, 2021, 28 (05) : 2 - 3
  • [22] A Survey of Multi-Access Edge Computing and Vehicular Networking
    Hou, Ling
    Gregory, Mark A.
    Li, Shuo
    IEEE ACCESS, 2022, 10 : 123436 - 123451
  • [23] A General Matrix Factorization Framework for Recommender Systems in Multi-access Edge Computing Network
    Liang, Guanzhong
    Sun, Chuan
    Zhou, Jianing
    Luo, Fengji
    Wen, Junhao
    Li, Xiuhua
    MOBILE NETWORKS & APPLICATIONS, 2022, 27 (04): : 1629 - 1641
  • [24] Digital Twins and Multi-Access Edge Computing for IIoT
    Plageras, Andreas P.
    Psannis, Konstantinos E.
    Virtual Reality and Intelligent Hardware, 2022, 4 (06): : 521 - 534
  • [25] The Advantage of Computation Offloading in Multi-Access Edge Computing
    Singh, Raghubir
    Armour, Simon
    Khan, Aftab
    Sooriyabandara, Mahesh
    Oikonomou, George
    2019 FOURTH INTERNATIONAL CONFERENCE ON FOG AND MOBILE EDGE COMPUTING (FMEC), 2019, : 289 - 294
  • [26] Stochastic model-driven capacity planning framework for multi-access edge computing
    Shojaee, Reza
    Yazdani, Nasser
    COMPUTING, 2022, 104 (12) : 2557 - 2579
  • [27] Multi-Access Edge Computing: An Overview and Latency Evaluation
    Miladinovic, Igor
    Schefer-Wenzl, Sigrid
    Burger, Thomas
    Hirner, Heimo
    2021 22ND IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2021, : 744 - 748
  • [28] MULTI-ACCESS MOBILE EDGE COMPUTING FOR HETEROGENEOUS IOT
    Zhang, Yan
    Wu, Yuan
    Moustafa, Hassnaa
    Tsang, Danny H. K.
    Leon-Garcia, Alberto
    Javaid, Usman
    IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (08) : 12 - 13
  • [29] Intelligent Offloading in Multi-Access Edge Computing: A State-of-the-Art Review and Framework
    Cao, Bin
    Zhang, Long
    Li, Yun
    Feng, Daquan
    Cao, Wei
    IEEE COMMUNICATIONS MAGAZINE, 2019, 57 (03) : 56 - 62
  • [30] A Global Orchestration Matching Framework for Energy-Efficient Multi-Access Edge Computing
    Mahn, Tobias
    Klein, Anja
    2021 IEEE 10TH INTERNATIONAL CONFERENCE ON CLOUD NETWORKING (IEEE CLOUDNET), 2021, : 11 - 18