Dynamic Investigation of a Solar-Driven Brayton Cycle with Supercritical CO2

被引:0
|
作者
Sammoutos, Christos [1 ]
Kitsopoulou, Angeliki [1 ]
Lykas, Panagiotis [1 ]
Bellos, Evangelos [1 ]
Tzivanidis, Christos [1 ]
机构
[1] Natl Tech Univ Athens, Sch Mech Engn, Dept Thermal Engn, Athens 15780, Greece
关键词
solar tower; Modelica; Brayton cycle; dynamic analysis; power production; TOWER POWER-PLANT; OF-THE-ART; HELIOSTAT FIELD; THERMAL STORAGE; DESIGN; TECHNOLOGY; ENERGY; STATE; OPTIMIZATION; TEMPERATURE;
D O I
10.3390/asi6040071
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The exploitation of solar irradiation is a critical weapon for facing the energy crisis and critical environmental problems. One of the most emerging solar technologies is the use of solar towers (or central receiver systems) coupled with high-performance thermodynamic cycles. In this direction, the present investigation examines a solar tower coupled to a closed-loop Brayton cycle which operates with supercritical CO2 (sCO(2)) as the working medium. The system also includes a storage system with two molten salt tanks for enabling proper thermal storage. The sCO(2) is an efficient fluid that presents significant advancements, mainly reduced compression work when it is compressed close to the critical point region. The novelty of the present work is based on the detailed dynamic investigation of the studied configuration for the year period using adjustable time step and its sizing for achieving a continuous operation, something that makes possible the establishment of this renewable technology as a reliable one. The analysis is conducted with a developed model in the Modelica programming language by also using the Dymola solver. According to the simulation results, the yearly solar thermal efficiency is 50.7%, the yearly thermodynamic cycle efficiency is 42.9% and the yearly total system efficiency is 18.0%.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Design of a composite receiver for solar-driven supercritical CO2 Brayton cycle
    Teng, Liang
    Xuan, Yimin
    [J]. JOURNAL OF CO2 UTILIZATION, 2019, 32 : 290 - 298
  • [2] Dynamic modeling and response characteristics of a solar-driven fuel cell hybrid system based on supercritical CO2 Brayton cycle
    Han, Xinrui
    Zhou, Yunlong
    Wang, Di
    Zhang, Yuxin
    Si, Long
    [J]. APPLIED THERMAL ENGINEERING, 2024, 252
  • [3] Thermal performance analysis of a solar-driven supercritical CO2 split-flow recompression Brayton cycle
    Hao, Yun
    Sun, Yan
    Lv, Shaohua
    [J]. ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2022, 44 (02) : 4032 - 4049
  • [4] Exergy Analysis and Off-Design Modeling of a Solar-Driven Supercritical CO2 Recompression Brayton Cycle
    Battisti, Felipe G.
    Klein, Carlos F.
    Escobar, Rodrigo A.
    Cardemil, Jose M.
    [J]. ENERGIES, 2023, 16 (12)
  • [5] A Novel Solar Receiver for Supercritical CO2 Brayton Cycle
    Teng, Liang
    Xuan, Yimin
    [J]. INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 339 - 344
  • [6] DYNAMIC MODEL OF SUPERCRITICAL CO2 BRAYTON CYCLES DRIVEN BY CONCENTRATED SOLAR POWER
    Couso, Gregory Berthet
    Vicencio, Rodrigo Barraza
    Padilla, Richardo Vasquez
    Too, Yen Chean Soo
    Pye, John
    [J]. PROCEEDINGS OF THE ASME 11TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2017, 2017,
  • [7] Review of dynamic performance and control strategy of supercritical CO2 Brayton cycle
    Wang, Xuan
    Wang, Rui
    Bian, Xingyan
    Cai, Jinwen
    Tian, Hua
    Shu, Gequn
    Li, Xinyu
    Qin, Zheng
    [J]. ENERGY AND AI, 2021, 5
  • [8] DYNAMIC MODEL OF A 10 MW SUPERCRITICAL CO2 RECOMPRESSION BRAYTON CYCLE
    Lambruschini, Fabio
    Liese, Eric
    Zitney, Stephen E.
    Traverso, Alberto
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2016, VOL 9, 2016, : 341 - 349
  • [9] Dynamic Characteristic Study of Supercritical CO2 Recompression Brayton Cycle System
    Zhu, Qinghui
    Han, Ruiyan
    Yang, Siyuan
    Zhang, Bo
    Yang, Zhuqiang
    [J]. FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [10] Dynamic modelling and transient characteristics of supercritical CO2 recompression Brayton cycle
    Deng, Tianrui
    Li, Xionghui
    Wang, Qiuwang
    Ma, Ting
    [J]. ENERGY, 2019, 180 : 292 - 302