DYNAMIC MODEL OF A 10 MW SUPERCRITICAL CO2 RECOMPRESSION BRAYTON CYCLE

被引:0
|
作者
Lambruschini, Fabio [1 ]
Liese, Eric [2 ]
Zitney, Stephen E. [2 ]
Traverso, Alberto [1 ]
机构
[1] Univ Genoa, TPG, DIME, Genoa, Italy
[2] US DOE, Natl Energy Technol Lab, Morgantown, WV USA
关键词
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this work, the National Energy Technology Laboratory (NETL) in collaboration with the Theiniochemical Power Group (TPG) of the University of Genoa have developed a dynamic model of a 10 MW closed-loop supercritical CO2 (sCO(2)) recompression Brayton cycle plant in the MATLAB-Simulink environment. The sCO(2) cycle modeled here is a closed cycle with an external thermal source used to heat the sCO(2) working fluid before it is expanded in a turbine. The turbine exhaust heat is recuperated using high- and low-temperature recuperators, with mixing of two compressor outlets between the recuperators (on the cold-side). About two thirds of the low-pressure sCO(2) is compressed by a main compressor, after passing through a cooler, while the remaining working fluid flows directly through a bypass compressor. The reference fluid properties (REFPROP) method by the National Institute of Standards and Technology is used to provide the thermodynamic and transport properties for sCO(2) over the cycle temperature and pressure range because the sCO(2) behavior is highly non-ideal, especially at the inlet of the two compressors. Dynamic simulations have been carried out to assess the behavior of the plant during a typical process disturbance.
引用
收藏
页码:341 / 349
页数:9
相关论文
共 50 条
  • [1] Dynamic modelling and transient characteristics of supercritical CO2 recompression Brayton cycle
    Deng, Tianrui
    Li, Xionghui
    Wang, Qiuwang
    Ma, Ting
    [J]. ENERGY, 2019, 180 : 292 - 302
  • [2] Dynamic Characteristic Study of Supercritical CO2 Recompression Brayton Cycle System
    Zhu, Qinghui
    Han, Ruiyan
    Yang, Siyuan
    Zhang, Bo
    Yang, Zhuqiang
    [J]. FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [3] Dynamic Modeling of 5 MWe Supercritical CO2 Recompression Brayton Cycle
    Yang, Zijiang
    Le Moullec, Yann
    Zhang, Jinyi
    Zhang, Yijun
    [J]. INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS (SOLARPACES 2017), 2018, 2033
  • [4] Dynamic Modeling and Transient Analysis of a Recompression Supercritical CO2 Brayton Cycle
    Zhou, Pan
    Zhang, Jinyi
    Le Moullec, Yann
    [J]. INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS (SOLARPACES 2019), 2020, 2303
  • [5] Second law analysis of supercritical CO2 recompression Brayton cycle
    Sarkar, Jahar
    [J]. ENERGY, 2009, 34 (09) : 1172 - 1178
  • [6] CONTROL OF A SUPERCRITICAL CO2 RECOMPRESSION BRAYTON CYCLE DEMONSTRATION LOOP
    Conboy, T.
    Pasch, J.
    Fleming, D.
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2013, VOL 8, 2013,
  • [7] Control of a Supercritical CO2 Recompression Brayton Cycle Demonstration Loop
    Conboy, T.
    Pasch, J.
    Fleming, D.
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2013, 135 (11):
  • [8] Investigation of the recompression pathway in the supercritical CO2 Brayton cycle: Cycle modification and thermodynamic study
    Li, Chengyu
    Wang, Yongzhen
    Wang, Youtang
    He, Fang
    [J]. APPLIED THERMAL ENGINEERING, 2024, 248
  • [9] Indirect integration of thermochemical energy storage with the recompression supercritical CO2 Brayton cycle
    Chen, Xiaoyi
    Jin, Xiaogang
    Ling, Xiang
    Wang, Yan
    [J]. ENERGY, 2020, 209
  • [10] A comprehensive evaluation of the effect of different control valves on the dynamic performance of a recompression supercritical CO2 Brayton cycle
    Bian, Xingyan
    Wang, Xuan
    Wang, Rui
    Cai, Jinwen
    Tian, Hua
    Shu, Gequn
    Lin, Zhimin
    Yu, Xiangyu
    Shi, Lingfeng
    [J]. ENERGY, 2022, 248