Principal component analysis of galaxy clustering in hyperspace of galaxy properties

被引:4
|
作者
Zhou, Shuren [1 ,2 ]
Zhang, Pengjie [1 ,2 ,3 ]
Chen, Ziyang [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Phys & Astron, Dept Astron, Shanghai 200240, Peoples R China
[2] Shanghai Key Lab Particle Phys & Cosmol, Key Lab Particle Astrophys & Cosmol, MOE, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Tsung Dao Lee Inst, Div Astron & Astrophys, Shanghai 200240, Peoples R China
基金
美国国家科学基金会;
关键词
methods: numerical; dark matter; large-scale structure of Universe; DARK-MATTER; ILLUSTRISTNG SIMULATIONS; RECONSTRUCTION; STOCHASTICITY; VARIANCE; HALOES; BIAS;
D O I
10.1093/mnras/stad1824
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Ongoing and upcoming galaxy surveys are providing precision measurements of galaxy clustering. However, a major obstacle in its cosmological application is the stochasticity in the galaxy bias. We explore whether the principal component analysis (PCA) of galaxy correlation matrix in hyperspace of galaxy properties (e.g. magnitude and colour) can reveal further information on mitigating this issue. Based on the hydrodynamic simulation TNG300-1, we analyse the cross-power spectrum matrix of galaxies in the magnitude and colour space of multiple photometric bands. (1) We find that the first principal component E-i((1)) is an excellent proxy of the galaxy deterministic bias b(D), in that E-i((1)) =root P-mm/lambda((1))b(D,i). Here, i denotes the i-th galaxy sub-sample. lambda((1)) is the largest eigenvalue, and P-mm is the matter power spectrum. We verify that this relation holds for all the galaxy samples investigated, down to k similar to 2h Mpc(-1). Since E-i((1)) is a direct observable, we can utilize it to design a linear weighting scheme to suppress the stochasticity in the galaxy-matter relation. For an LSST-like magnitude limit galaxy sample, the stochasticity S = 1 - r(2) can be suppressed by a factor of greater than or similar to 2 at k = 1h Mpc(-1.) This reduces the stochasticity-induced systematic error in the matter power spectrum reconstruction combining galaxy clustering and galaxy-galaxy lensing from similar to 12 per cent to similar to 5 per cent at k = 1h Mpc(-1). (2) We also find that S increases monotonically with f(lambda) and f(lambda 2). f(lambda,lambda 2) quantify the fractional contribution of other eigenmodes to the galaxy clustering and are direct observables. Therefore, the two provide extra information on mitigating galaxy stochasticity.
引用
收藏
页码:5789 / 5798
页数:10
相关论文
共 50 条
  • [41] Clustering and disjoint principal component analysis
    Vichi, Maurizio
    Saporta, Gilbert
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (08) : 3194 - 3208
  • [42] XML clustering by principal component analysis
    Liu, JH
    Wang, JTL
    Hsu, W
    Herbert, KG
    [J]. ICTAI 2004: 16TH IEEE INTERNATIONALCONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, : 658 - 662
  • [43] Principal component analysis and clustering on manifolds
    V. Mardia, Kanti
    Wiechers, Henrik
    Eltzner, Benjamin
    Huckemann, Stephan F.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 188
  • [44] GALAXY CLUSTERING AND ANTI-CLUSTERING
    SASLAW, WC
    [J]. NATURE, 1979, 277 (5694) : 266 - 267
  • [45] Detecting relativistic Doppler in galaxy clustering with tailored galaxy samples
    Montano, Federico
    Camera, Stefano
    [J]. PHYSICS OF THE DARK UNIVERSE, 2024, 46
  • [46] Galaxy clustering in the VVV near-IR galaxy catalogue
    Soto, Mario
    Sgro, Mario A.
    Baravalle, Laura D.
    Victoria Alonso, M.
    Nilo Castellon, Jose Luis
    Valotto, Carlos
    Taverna, Antonela
    Diaz-Gimenez, Eugenia
    Villalon, Carolina
    Minniti, Dante
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 513 (02) : 2747 - 2760
  • [47] Consistent and simultaneous modelling of galaxy clustering and galaxy-galaxy lensing with subhalo abundance matching
    Contreras, Sergio
    Angulo, Raul E.
    Chaves-Montero, Jonas
    White, Simon D. M.
    Arico, Giovanni
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 520 (01) : 489 - 502
  • [48] Fourier analysis of luminosity-dependent galaxy clustering
    Percival, WJ
    Verde, L
    Peacock, JA
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 347 (02) : 645 - 653
  • [49] Dark Energy Survey Year 3 results: Optimizing the lens sample in a combined galaxy clustering and galaxy-galaxy lensing analysis
    Porredon, A.
    Crocce, M.
    Fosalba, P.
    Elvin-Poole, J.
    Carnero Rosell, A.
    Cawthon, R.
    Eifler, T. F.
    Fang, X.
    Ferrero, I
    Krause, E.
    MacCrann, N.
    Weaverdyck, N.
    Abbott, T. M. C.
    Aguena, M.
    Allam, S.
    Amon, A.
    Avila, S.
    Bacon, D.
    Bertin, E.
    Bhargava, S.
    Bridle, S. L.
    Brooks, D.
    Kind, M. Carrasco
    Carretero, J.
    Castander, F. J.
    Choi, A.
    Costanzi, M.
    da Costa, L. N.
    Pereira, M. E. S.
    De Vicente, J.
    Desai, S.
    Diehl, H. T.
    Doel, P.
    Drlica-Wagner, A.
    Eckert, K.
    Ferte, A.
    Flaugher, B.
    Frieman, J.
    Garcia-Bellido, J.
    Gaztanaga, E.
    Gerdes, D. W.
    Giannantonio, T.
    Gruen, D.
    Gruendl, R. A.
    Gschwend, J.
    Gutierrez, G.
    Hartley, W. G.
    Hinton, S. R.
    Hollowood, D. L.
    Honscheid, K.
    [J]. PHYSICAL REVIEW D, 2021, 103 (04)
  • [50] Galaxy clustering analysis with SimBIG and the wavelet scattering transform
    Blancard, Bruno Regaldo-Saint
    Hahn, Changhoon
    Ho, Shirley
    Hou, Jiamin
    Lemos, Pablo
    Massara, Elena
    Modi, Chirag
    Dizgah, Azadeh Moradinezhad
    Parker, Liam
    Yao, Yuling
    Eickenberg, Michael
    [J]. PHYSICAL REVIEW D, 2024, 109 (08)