Principal component analysis of galaxy clustering in hyperspace of galaxy properties

被引:4
|
作者
Zhou, Shuren [1 ,2 ]
Zhang, Pengjie [1 ,2 ,3 ]
Chen, Ziyang [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Phys & Astron, Dept Astron, Shanghai 200240, Peoples R China
[2] Shanghai Key Lab Particle Phys & Cosmol, Key Lab Particle Astrophys & Cosmol, MOE, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Tsung Dao Lee Inst, Div Astron & Astrophys, Shanghai 200240, Peoples R China
基金
美国国家科学基金会;
关键词
methods: numerical; dark matter; large-scale structure of Universe; DARK-MATTER; ILLUSTRISTNG SIMULATIONS; RECONSTRUCTION; STOCHASTICITY; VARIANCE; HALOES; BIAS;
D O I
10.1093/mnras/stad1824
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Ongoing and upcoming galaxy surveys are providing precision measurements of galaxy clustering. However, a major obstacle in its cosmological application is the stochasticity in the galaxy bias. We explore whether the principal component analysis (PCA) of galaxy correlation matrix in hyperspace of galaxy properties (e.g. magnitude and colour) can reveal further information on mitigating this issue. Based on the hydrodynamic simulation TNG300-1, we analyse the cross-power spectrum matrix of galaxies in the magnitude and colour space of multiple photometric bands. (1) We find that the first principal component E-i((1)) is an excellent proxy of the galaxy deterministic bias b(D), in that E-i((1)) =root P-mm/lambda((1))b(D,i). Here, i denotes the i-th galaxy sub-sample. lambda((1)) is the largest eigenvalue, and P-mm is the matter power spectrum. We verify that this relation holds for all the galaxy samples investigated, down to k similar to 2h Mpc(-1). Since E-i((1)) is a direct observable, we can utilize it to design a linear weighting scheme to suppress the stochasticity in the galaxy-matter relation. For an LSST-like magnitude limit galaxy sample, the stochasticity S = 1 - r(2) can be suppressed by a factor of greater than or similar to 2 at k = 1h Mpc(-1.) This reduces the stochasticity-induced systematic error in the matter power spectrum reconstruction combining galaxy clustering and galaxy-galaxy lensing from similar to 12 per cent to similar to 5 per cent at k = 1h Mpc(-1). (2) We also find that S increases monotonically with f(lambda) and f(lambda 2). f(lambda,lambda 2) quantify the fractional contribution of other eigenmodes to the galaxy clustering and are direct observables. Therefore, the two provide extra information on mitigating galaxy stochasticity.
引用
收藏
页码:5789 / 5798
页数:10
相关论文
共 50 条
  • [1] Principal component analysis of synthetic galaxy spectra
    Ronen, S
    Aragón-Salamanca, A
    Lahav, O
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 303 (02) : 284 - 296
  • [2] Principal component analysis of International Ultraviolet Explorer galaxy spectra
    Formiggini, L
    Brosch, N
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 350 (03) : 1067 - 1078
  • [3] The dependence of clustering on galaxy properties
    Li, C
    Kauffmann, G
    Jing, YP
    White, SDM
    Börner, G
    Cheng, FZ
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 368 (01) : 21 - 36
  • [4] A BOOTSTRAP RESAMPLING ANALYSIS OF GALAXY CLUSTERING
    BARROW, JD
    BHAVSAR, SP
    SONODA, DH
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1984, 210 (02) : P19 - P23
  • [5] Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey
    Park, Y.
    Krause, E.
    Dodelson, S.
    Jain, B.
    Amara, A.
    Becker, M. R.
    Bridle, S. L.
    Clampitt, J.
    Crocce, M.
    Fosalba, P.
    Gaztanaga, E.
    Honscheid, K.
    Rozo, E.
    Sobreira, F.
    Sanchez, C.
    Wechsler, R. H.
    Abbott, T.
    Abdalla, F. B.
    Allam, S.
    Benoit-Levy, A.
    Bertin, E.
    Brooks, D.
    Buckley-Geer, E.
    Burke, D. L.
    Carnero Rosell, A.
    Carrasco Kind, M.
    Carretero, J.
    Castander, F. J.
    da Costa, L. N.
    DePoy, D. L.
    Desai, S.
    Dietrich, J. P.
    Doel, P.
    Eifler, T. F.
    Fausti Neto, A.
    Fernandez, E.
    Finley, D. A.
    Flaugher, B.
    Gerdes, D. W.
    Gruen, D.
    Gruendl, R. A.
    Gutierrez, G.
    James, D. J.
    Kent, S.
    Kuehn, K.
    Kuropatkin, N.
    Lima, M.
    Maia, M. A. G.
    Marshall, J. L.
    Melchior, P.
    [J]. PHYSICAL REVIEW D, 2016, 94 (06)
  • [6] MEGS: Morphological Evaluation of Galactic Structure: Principal component analysis as a galaxy morphology model
    Cakir, U.
    Buck, T.
    [J]. Astronomy and Astrophysics, 2024, 691
  • [7] Galaxy clustering and galaxy bias in a ΛCDM universe
    Weinberg, DH
    Davé, R
    Katz, N
    Hernquist, L
    [J]. ASTROPHYSICAL JOURNAL, 2004, 601 (01): : 1 - 21
  • [8] Joint galaxy-galaxy lensing and clustering constraints on galaxy formation
    Renneby, Malin
    Henriques, Bruno M. B.
    Hilbert, Stefan
    Nelson, Dylan
    Vogelsberger, Mark
    Angulo, Raul E.
    Springel, Volker
    Hernquist, Lars
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 498 (04) : 5804 - 5833
  • [9] Dependence of the clustering properties of galaxies on galaxy age
    Deng, Xin-Fa
    Qi, Xiao-Ping
    Wu, Ping
    Jiang, Peng
    Song, Jun
    Ding, Ying-Ping
    [J]. CHINESE JOURNAL OF PHYSICS, 2016, 54 (02) : 263 - 268
  • [10] CLUSTERING PROPERTIES FROM FINITE GALAXY SAMPLES
    PROVENZALE, A
    GUZZO, L
    MURANTE, G
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1994, 266 (03) : 555 - 566