General Decay Results for a Viscoelastic Euler-Bernoulli Equation with Logarithmic Nonlinearity Source and a Nonlinear Boundary Feedback

被引:1
|
作者
Baaziz, Islam [1 ]
Benabderrahmane, Benyattou [2 ]
Drabla, Salah [1 ]
机构
[1] Univ Ferhat Abbas Setif 1, Dept Math, Lab Appl Math LaMA, Setif 19000, Algeria
[2] Univ Mohamed Boudiaf, Dept Math, Msila 28000, Algeria
关键词
General decay; nonlinear source; viscoelasticity; plate equation; relaxation function; logarithmic nonlinearity; convex function; ENERGY DECAY; BLOW-UP; EXISTENCE;
D O I
10.1007/s00009-023-02363-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a bounded domain, we consider a viscoelastic Euler-Bernoulli equation called also viscoelastic plate equation, with logarithmic non-linearity source in the right-hand side, utt +Delta(2)u - integral(t)(0) g(t - s)Delta(2)u(s)ds + h(ut) = |u|(gamma-2) u ln |u|, where gamma > 2 and the relaxation function g satisfied g' (t) <= -xi(t)H(g(t)), for all t > 0, where H is an increasing and convex function near the origin and xi is a nonincreasing function. In present of a nonlinear feedback on a part of the boundary, we establish, with certain initial data, a general decay results, using the multiplier method and some properties of the convex functions. Our new results generalize and significantly improve earlier results in the literature, in particular, the result of Al-Gharabli et al. (Commun Pure Appl Anal 18(1): 159-180, 2019), Al-Gharabli et al. (Math Comput Appl 27: 10, 2022), Mustafa (Evol Equ Control Theory 6(2): 61-276, 2017) and Cavalcanti et al. (J Differ Integral Equ 17: 495-510, 2004).
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Boundary Controllers for Euler-Bernoulli Beam with Arbitrary Decay Rate
    Smyshlyaev, Andrey
    Guo, Bao-Zhu
    Krstic, Miroslav
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 185 - 190
  • [32] Dynamic stabilisation for an Euler-Bernoulli beam equation with boundary control and matched nonlinear disturbance
    Mei, Zhan-Dong
    INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (03) : 626 - 640
  • [33] ARBITRARY DECAY FOR A NONLINEAR EULER-BERNOULLI BEAM WITH NEUTRAL DELAY
    Lakehal, Ibrahim
    Benterki, Djamila
    Zennir, Khaled
    THEORETICAL AND APPLIED MECHANICS, 2023, 50 (01) : 13 - 24
  • [34] Stabilization of the Euler-Bernoulli equation via boundary connection with heat equation
    Zhang, Qiong
    Wang, Jun-Min
    Guo, Bao-Zhu
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2014, 26 (01) : 77 - 118
  • [35] Robust output feedback Control for an Euler-Bernoulli Beam Equation
    Guo, Bao-Zhu
    Meng, Tingting
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 800 - 805
  • [36] Global existence and general decay for a weak viscoelastic equation with acoustic boundary conditions and a logarithmic source term
    Tahamtani, Faramarz
    Shahrouzi, Mohammad
    Ferreira, Jorge
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (05):
  • [37] Global existence and general decay for a weak viscoelastic equation with acoustic boundary conditions and a logarithmic source term
    Faramarz Tahamtani
    Mohammad Shahrouzi
    Jorge Ferreira
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [38] Unboundedness for the Euler-Bernoulli beam equation with a fractional boundary dissipation
    Labidi, S
    Tatar, NE
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 161 (03) : 697 - 706
  • [39] Boundary PID output regulation for Euler-Bernoulli beam equation
    Fan, Xueru
    Xu, Cheng-Zhong
    Kou, Chunhai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 529 (01)
  • [40] Stability of an Euler-Bernoulli Beam With a Nonlinear Dynamic Feedback System
    Miletic, Maja
    Stuerzer, Dominik
    Arnold, Anton
    Kugi, Andreas
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (10) : 2782 - 2795