Variational quantum approximate support vector machine with inference transfer

被引:14
|
作者
Park, Siheon [1 ]
Park, Daniel K. K. [2 ,3 ]
Rhee, June-Koo Kevin [1 ,4 ]
机构
[1] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
[2] Yonsei Univ, Dept Appl Stat, Seoul 03722, South Korea
[3] Yonsei Univ, Dept Stat & Data Sci, Seoul 03722, South Korea
[4] Qunova Comp Inc, Daejeon 34051, South Korea
关键词
D O I
10.1038/s41598-023-29495-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A kernel-based quantum classifier is the most practical and influential quantum machine learning technique for the hyper-linear classification of complex data. We propose a Variational Quantum Approximate Support Vector Machine (VQASVM) algorithm that demonstrates empirical sub-quadratic run-time complexity with quantum operations feasible even in NISQ computers. We experimented our algorithm with toy example dataset on cloud-based NISQ machines as a proof of concept. We also numerically investigated its performance on the standard Iris flower and MNIST datasets to confirm the practicality and scalability.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A Transfer Learning Algorithm Based on Support Vector Machine
    Wu, Weifei
    Chen, Shidian
    Bao, LiYing
    NEURAL PROCESSING LETTERS, 2023, 55 (05) : 6043 - 6066
  • [42] Knowledge embedded transfer twin support vector machine
    Wang H.-Y.
    Geng L.
    Ni T.-G.
    Wang C.
    Kongzhi yu Juece/Control and Decision, 2019, 34 (03): : 519 - 526
  • [43] Quantum phase transition detection via quantum support vector machine
    Wang, Youle
    Cao, Linyun
    QUANTUM SCIENCE AND TECHNOLOGY, 2025, 10 (01):
  • [44] Enhancing quantum support vector machines through variational kernel training
    N. Innan
    M.A.Z. Khan
    B. Panda
    M. Bennai
    Quantum Information Processing, 22
  • [45] Enhancing quantum support vector machines through variational kernel training
    Innan, N.
    Khan, M. A. Z.
    Panda, B.
    Bennai, M.
    QUANTUM INFORMATION PROCESSING, 2023, 22 (10)
  • [46] APPROXIMATE DUAL AND APPROXIMATE VECTOR VARIATIONAL INEQUALITY FOR MULTIOBJECTIVE OPTIMIZATION
    CHEN, GY
    CRAVEN, BD
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1989, 47 : 418 - 423
  • [47] APPROXIMATE VARIATIONAL PRINCIPLE IN QUANTUM STATISTICS
    MACDONALD, WM
    RICHARDSON, JM
    PHYSICAL REVIEW, 1954, 96 (01): : 18 - 21
  • [48] Exact and approximate vector Ekeland variational principles
    Bao, T. Q.
    Gutierrez, C.
    Novo, V
    Rodenas-Pedregosa, J. L.
    OPTIMIZATION, 2022, 71 (15) : 4497 - 4527
  • [49] Hand motor imagination identification based on approximate entropy and support vector machine
    Zhang, Chong
    Zheng, Chongxun
    Yu, Xiaolin
    Fang, Yi
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 2829 - 2832
  • [50] A Web Application for Running Quantum -enhanced Support Vector Machine
    Giovanni, Acampora
    Di Martino, Ferdinando
    Robertazzi, Gennaro Alessio
    Vitiello, Autilia
    2022 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2022,