Deep hierarchical reinforcement learning based formation planning for multiple unmanned surface vehicles with experimental results

被引:11
|
作者
Wei, Xiangwei [1 ]
Wang, Hao [1 ]
Tang, Yixuan [1 ]
机构
[1] Northeastern Univ, Fac Robot Sci & Engn, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep reinforcement learning; Hierarchical reinforcement learning; Artificial potential field; Formation control; Unmanned surface vehicles; CONTROLLER;
D O I
10.1016/j.oceaneng.2023.115577
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this paper, a novel multi-USV formation path planning algorithm is proposed based on deep reinforcement learning. First, a goal-based hierarchical reinforcement learning algorithm is designed to improve training speed and resolve planning conflicts within the formation. Second, an improved artificial potential field algorithm is designed in the training process to obtain the optimal path planning and obstacle avoidance learning scheme for multi-USVs in the determined perceptual environment. Finally, a formation geometry model is established to describe the physical relationships among USVs, and a composite reward function is proposed to guide the training. Numerous simulation tests are conducted, and the effectiveness of the proposed algorithm are further validated through the NEU-MSV01 experimental platform with a combination of parameterized Line of Sight (LOS) guidance.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [21] Research on Control of Unmanned Surface Vehicle Based on Deep Reinforcement Learning
    Li, Baoan
    Ship Building of China, 2020, 61 : 14 - 20
  • [22] A Review on Collaborative Planning of Multiple Unmanned Surface Vehicles
    Liu, Guanqun
    Wu, Junwei
    Wen, Naifeng
    Zhang, Rubo
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 2158 - 2163
  • [23] An Autonomous Path Planning Model for Unmanned Ships Based on Deep Reinforcement Learning
    Guo, Siyu
    Zhang, Xiuguo
    Zheng, Yisong
    Du, Yiquan
    SENSORS, 2020, 20 (02)
  • [24] Path Planning Technology of Unmanned Vehicle Based on Improved Deep Reinforcement Learning
    Zhang, Kai
    Wang, Guile
    Hu, Jinwen
    Xu, Zhao
    Guo, Chubing
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8392 - 8397
  • [25] A novel path planning approach for unmanned ships based on deep reinforcement learning
    Chen, Chen
    Ma, Feng
    Liu, Jia-Lun
    Yan, Xin-Ping
    Chen, Xian-Qiao
    DATA SCIENCE AND KNOWLEDGE ENGINEERING FOR SENSING DECISION SUPPORT, 2018, 11 : 626 - 633
  • [26] Trajectory planning aided unmanned surface vehicle optimization communication method with hierarchical reinforcement learning
    Tang, Chengkai
    Shi, Hanzhang
    Zhang, Lingling
    OCEAN ENGINEERING, 2024, 307
  • [27] Deep reinforcement learning based computing offloading in unmanned aerial vehicles for disaster management
    Kesavan, Anuratha
    Mohanram, Nandhini Jembu
    Joshi, Soshya
    Sankar, Uma
    JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2024, 75 (02): : 94 - 101
  • [28] Fast and Accurate Trajectory Tracking for Unmanned Aerial Vehicles based on Deep Reinforcement Learning
    Li, Yilan
    Li, Hongjia
    Li, Zhe
    Fang, Haowen
    Sanyal, Amit K.
    Wang, Yanzhi
    Qiu, Qinru
    2019 IEEE 25TH INTERNATIONAL CONFERENCE ON EMBEDDED AND REAL-TIME COMPUTING SYSTEMS AND APPLICATIONS (RTCSA 2019), 2019,
  • [29] Collision-avoidance under COLREGS for unmanned surface vehicles via deep reinforcement learning
    Ma, Yong
    Zhao, Yujiao
    Wang, Yulong
    Gan, Langxiong
    Zheng, Yuanzhou
    MARITIME POLICY & MANAGEMENT, 2020, 47 (05) : 665 - 686
  • [30] Autonomous Obstacle Avoidance Algorithm for Unmanned Aerial Vehicles Based on Deep Reinforcement Learning
    Gao, Yuan
    Ren, Ling
    Shi, Tianwei
    Xu, Teng
    Ding, Jianbang
    ENGINEERING LETTERS, 2024, 32 (03) : 650 - 660