3D Neural Field Generation using Triplane Diffusion

被引:45
|
作者
Shue, J. Ryan [1 ]
Chan, Eric Ryan [2 ]
Po, Ryan [2 ]
Ankner, Zachary [3 ,4 ]
Wu, Jiajun [2 ]
Wetzstein, Gordon [2 ]
机构
[1] Milton Acad, Milton, MA 02186 USA
[2] Stanford Univ, Stanford, CA 94305 USA
[3] MIT, Cambridge, MA 02139 USA
[4] MosaicML, San Francisco, CA USA
关键词
D O I
10.1109/CVPR52729.2023.02000
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diffusion models have emerged as the state-of-the-art for image generation, among other tasks. Here, we present an efficient diffusion-based model for 3D-aware generation of neural fields. Our approach pre-processes training data, such as ShapeNet meshes, by converting them to continuous occupancy fields and factoring them into a set of axis-aligned triplane feature representations. Thus, our 3D training scenes are all represented by 2D feature planes, and we can directly train existing 2D diffusion models on these representations to generate 3D neural fields with high quality and diversity, outperforming alternative approaches to 3D-aware generation. Our approach requires essential modifications to existing triplane factorization pipelines to make the resulting features easy to learn for the diffusion model. We demonstrate state-of-the-art results on 3D generation on several object classes from ShapeNet.
引用
收藏
页码:20875 / 20886
页数:12
相关论文
共 50 条
  • [31] DiT-3D: Exploring Plain Diffusion Transformers for 3D Shape Generation
    Mo, Shentong
    Xie, Enze
    Chu, Ruihang
    Yao, Lewei
    Hong, Lanqing
    Niessner, Matthias
    Li, Zhenguo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [32] 3D Denoising Diffusion Probabilistic Models for 3D microstructure image generation of fuel cell electrodes
    Bentamou, Abdelouahid
    Chretien, Stephane
    Gavet, Yann
    COMPUTATIONAL MATERIALS SCIENCE, 2025, 248
  • [33] PEDM: A 3D Position Encoding Diffusion Model for Industrial Cracking Furnace Scalar Field Data Generation
    Ding, Jian
    Cheng, Hui
    Hu, Guihua
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (34) : 15276 - 15290
  • [34] FPNN: Field Probing Neural Networks for 3D Data
    Li, Yangyan
    Pirk, Soren
    Su, Hao
    Qi, Charles R.
    Guibas, Leonidas J.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [35] Diffusion-based Generation, Optimization, and Planning in 3D Scenes
    Huang, Siyuan
    Wang, Zan
    Li, Puhao
    Jia, Baoxiong
    Liu, Tengyu
    Zhu, Yixin
    Liang, Wei
    Zhu, Song-Chun
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 16750 - 16761
  • [36] MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation
    Vignac, Clement
    Osman, Nagham
    Toni, Laura
    Frossard, Pascal
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT II, 2023, 14170 : 560 - 576
  • [37] Denoising diffusion probabilistic models for 3D medical image generation
    Khader, Firas
    Mueller-Franzes, Gustav
    Arasteh, Soroosh Tayebi
    Han, Tianyu
    Haarburger, Christoph
    Schulze-Hagen, Maximilian
    Schad, Philipp
    Engelhardt, Sandy
    Baessler, Bettina
    Foersch, Sebastian
    Stegmaier, Johannes
    Kuhl, Christiane
    Nebelung, Sven
    Kather, Jakob Nikolas
    Truhn, Daniel
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [38] Denoising diffusion probabilistic models for 3D medical image generation
    Firas Khader
    Gustav Müller-Franzes
    Soroosh Tayebi Arasteh
    Tianyu Han
    Christoph Haarburger
    Maximilian Schulze-Hagen
    Philipp Schad
    Sandy Engelhardt
    Bettina Baeßler
    Sebastian Foersch
    Johannes Stegmaier
    Christiane Kuhl
    Sven Nebelung
    Jakob Nikolas Kather
    Daniel Truhn
    Scientific Reports, 13 (1)
  • [39] Locally Attentional SDF Diffusion for Controllable 3D Shape Generation
    Zheng, Xin-Yang
    Pan, Hao
    Wang, Peng-Shuai
    Tong, Xin
    Liu, Yang
    Shum, Heung-Yeung
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (04):
  • [40] Controllable 3D Face Generation with Conditional Style Code Diffusion
    Shen, Xiaolong
    Ma, Jianxin
    Zhou, Chang
    Yang, Zongxin
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 5, 2024, : 4811 - 4819