The Convergence of Euler-Maruyama Method of Differential Equations

被引:0
|
作者
Xu, Shanshan [1 ,2 ]
Wang, Lin [1 ,2 ]
Wang, Wenqiang [1 ,2 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable-order Caputo fractional derivative; Stochastic differential equations; Euler-Maruyama method; convergence; multiplicative noise; VARIABLE-ORDER; NUMERICAL-SOLUTION; EXISTENCE;
D O I
10.4208/aamm.OA-2021-0222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first prove the existence and uniqueness theorem of the solution of nonlinear variable-order fractional stochastic differential equations (VFS-DEs). We futher constructe the Euler-Maruyama method to solve the equations and prove the convergence in mean and the strong convergence of the method. In par-ticular, when the fractional order is no longer varying, the conclusions obtained are consistent with the relevant conclusions in the existing literature. Finally, the numeri-cal experiments at the end of the article verify the correctness of the theoretical results obtained.
引用
收藏
页码:852 / 879
页数:28
相关论文
共 50 条