NUMERICAL SOLUTION OF A FRACTIONAL COUPLED SYSTEM WITH THE CAPUTO-FABRIZIO FRACTIONAL DERIVATIVE

被引:5
|
作者
Mansouri, Ikram [1 ,2 ]
Bekkouche, Mohammed Moumen [1 ]
Ahmed, Abdelaziz Azeb [1 ]
机构
[1] El oued Univ, Fac Exact Sci, Dept Math, El Oued 39000, Algeria
[2] Lab Operator Theory & PDE Fdn & Applicat, El Oued, Algeria
关键词
the Caputo-Fabrizio fractional derivative; fractional integral; coupled system; fractional differential equation; fixed point; Adomian decomposition method; BOUNDARY-VALUE PROBLEM;
D O I
10.17512/jamcm.2023.1.04
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Within this work, we discuss the existence of solutions for a coupled system of linear fractional differential equations involving Caputo-Fabrizio fractional orders. We prove the existence and uniqueness of the solution by using the Picard-Lindelo center dot f method and fixed point theory. Also, to compute an approximate solution of problem, we utilize the Adomian decomposition method (ADM), as this method provides the solution in the form of a series such that the infinite series converge to the exact solution. Numer-ical examples are presented to illustrate the validity and effectiveness of the proposed method.
引用
收藏
页码:46 / 56
页数:11
相关论文
共 50 条
  • [41] A Fractional Model for the Dynamics of Smoking Tobacco Using Caputo-Fabrizio Derivative
    Melkamu, Belaynesh
    Mebrate, Benyam
    JOURNAL OF APPLIED MATHEMATICS, 2022, 2022
  • [42] Numerical Investigation of the Dynamical Behavior of Hepatitis B Virus via Caputo-Fabrizio Fractional Derivative
    Ahmad, Imtiaz
    Jan, Rashid
    Razak, Normy Norfiza Abdul
    Khan, Aziz
    Abdeljawad, Thabet
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2025, 18 (01):
  • [43] Numerical solvability of generalized Bagley-Torvik fractional models under Caputo-Fabrizio derivative
    Hasan, Shatha
    Djeddi, Nadir
    Al-Smadi, Mohammed
    Al-Omari, Shrideh
    Momani, Shaher
    Fulga, Andreea
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [44] GENERALIZED CAPUTO-FABRIZIO FRACTIONAL DIFFERENTIAL EQUATION
    Onitsuka, Masakazu
    EL-Fassi, Iz-iddine
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (02): : 964 - 975
  • [45] Fractional Brinkman type fluid in channel under the effect of MHD with Caputo-Fabrizio fractional derivative
    Khan, Zar Ali
    Ul Haq, Sami
    Khan, Tahir Saeed
    Khan, Ilyas
    Nisar, Kottakkaran Sooppy
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 2901 - 2910
  • [46] Random Caputo-Fabrizio fractional differential inclusions
    Abbas, Said
    Benchohra, Mouffak
    Henderson, Johnny
    MATHEMATICAL MODELLING AND CONTROL, 2021, 1 (02): : 102 - 111
  • [47] Solution of time-fractional gas dynamics equation using Elzaki decomposition method with Caputo-Fabrizio fractional derivative
    Sadaf, Maasoomah
    Perveen, Zahida
    Akram, Ghazala
    Habiba, Ume
    Abbas, Muhammad
    Emadifar, Homan
    PLOS ONE, 2024, 19 (05):
  • [48] A normalized Caputo-Fabrizio fractional diffusion equation
    Kim, Junseok
    AIMS MATHEMATICS, 2025, 10 (03): : 6195 - 6208
  • [49] On the Caputo-Fabrizio fractal fractional representation for the Lorenz chaotic system
    Dlamini, Anastacia
    Goufo, Emile F. Doungmo
    Khumalo, Melusi
    AIMS MATHEMATICS, 2021, 6 (11): : 12395 - 12421
  • [50] The nonlocal coupled system of Caputo-Fabrizio fractional q-integro differential equation
    Ali, Khalid K.
    Raslan, K. R.
    Ibrahim, Amira Abd-Elall
    Baleanu, Dumitru
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 1764 - 1780