Explicit bounds for the solutions of superelliptic equations over number fields

被引:1
|
作者
Berczes, Attila [2 ]
Bugeaud, Yann [3 ,4 ,5 ]
Gyory, Kalman [2 ]
Mello, Jorge [6 ]
Ostafe, Alina [7 ]
Sha, Min [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Univ Debrecen, Inst Math, POB 12, H-4010 Debrecen, Hungary
[3] Univ Strasbourg, Inst Rech Math Avancee, UMR 7501, Strasbourg, France
[4] CNRS, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[5] Inst Univ France, Paris, France
[6] Oakland Univ, Dept Math & Stat, Rochester, MI 48309 USA
[7] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Superelliptic equation; Thue equation; Baker's method; height function; S-INTEGRAL SOLUTIONS; UNIT EQUATIONS; FORM;
D O I
10.1515/forum-2023-0381
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f be a polynomial with coefficients in the ring O-S of S-integers of a number field K, b a non-zero S-integer, and m an integer >= 2. We consider the following equation (*): f (x) = by(m) in x, y is an element of O-S. Under the well-known LeVeque condition, we give fully explicit upper bounds in terms of K, S, f, m and the S-norm of b for the heights of the solutions x of equation (*). Further, we give an explicit bound C in terms of K, S, f and the S-norm of b such that if m > C equation (*) has only solutions with y = 0 or a root of unity. Our results are more detailed versions of work of Trelina, Brindza, Shorey and Tijdeman, Voutier and Bugeaud, and extend earlier results of Berczes, Evertse, and Gyory to polynomials with multiple roots. In contrast with the previous results, our bounds depend on the S-norm of b instead of its height.
引用
收藏
页码:135 / 158
页数:24
相关论文
共 50 条
  • [21] Note on the Number of Solutions of Cubic Diagonal Equations over Finite Fields
    HU Shuangnian
    WANG Shihan
    LI Yanyan
    NIU Yujun
    Wuhan University Journal of Natural Sciences, 2023, 28 (05) : 369 - 372
  • [22] THE NUMBER OF SOLUTIONS OF CERTAIN DIAGONAL EQUATIONS OVER FINITE-FIELDS
    WOLFMANN, J
    JOURNAL OF NUMBER THEORY, 1992, 42 (03) : 247 - 257
  • [23] Explicit quadratic Chabauty over number fields
    Jennifer S. Balakrishnan
    Amnon Besser
    Francesca Bianchi
    J. Steffen Müller
    Israel Journal of Mathematics, 2021, 243 : 185 - 232
  • [24] Explicit quadratic Chabauty over number fields
    Balakrishnan, Jennifer S.
    Besser, Amnon
    Bianchi, Francesca
    Mueller, J. Steffen
    ISRAEL JOURNAL OF MATHEMATICS, 2021, 243 (01) : 185 - 232
  • [25] Bounds on the Number of Real Solutions to Polynomial Equations
    Bates, Daniel J.
    Bihan, Frederic
    Sottile, Frank
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [26] SMALL SOLUTIONS TO INHOMOGENEOUS LINEAR-EQUATIONS OVER NUMBER-FIELDS
    OLEARY, R
    VAALER, JD
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 336 (02) : 915 - 931
  • [27] On the Carlitz problem on the number of solutions to some special equations over finite fields
    Baoulina, Ioulia N.
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2011, 23 (01): : 1 - 20
  • [28] Explicit bounds for the solutions of second order linear differential equations
    Almenar, Pedro
    Jodar, Lucas
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (05) : 789 - 798
  • [29] Bounds for the number of points on curves over finite fields
    Arakelian, Nazar
    Borges, Herivelto
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 228 (01) : 177 - 199
  • [30] Bounds for the number of points on curves over finite fields
    Nazar Arakelian
    Herivelto Borges
    Israel Journal of Mathematics, 2018, 228 : 177 - 199