Prediction of Students' Academic Performance in the Programming Fundamentals Course Using Long Short-Term Memory Neural Networks

被引:4
|
作者
Vives, Luis [1 ]
Cabezas, Ivan [2 ]
Vives, Juan Carlos [3 ]
Reyes, Nilton German [4 ]
Aquino, Janet [5 ]
Condor, Jose Bautista [5 ]
Altamirano, S. Francisco Segura
机构
[1] Peruvian Univ Appl Sci, Fac Engn, Lima 15023, Peru
[2] Univ ICESI, Dept Comp & Smart Syst, Cali 760031, Colombia
[3] Univ Senor De Sipan, Profess Sch Elect Mech Engn, Pimentel 150131, Peru
[4] Univ Nacl Pedro Ruiz Gallo, Lambayeque 01131, Peru
[5] Univ Nacl Trujillo, Trujillo 13001, Peru
关键词
Educational data mining; generative adversarial networks; long-short term memory; synthetic minority over-sampling technique;
D O I
10.1109/ACCESS.2024.3350169
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, there has been evidence of a growing interest on the part of universities to know in advance the academic performance of their students and allow them to establish timely strategies to avoid desertion and failure. One of the biggest challenges to predicting student performance is presented in the course "Programming Fundamentals" of Computer Science, Software Engineering, and Information Systems Engineering careers in Peruvian universities for high student dropout rates. The objective of this research was to explore the efficiency of Long-Short Term Memory Networks (LSTM) in the field of Educational Data Mining (EDM) to predict the academic performance of students during the seventh, eighth, twelfth, and sixteenth weeks of the academic semester, which allowed us to identify students at risk of failing the course. This research compares several predictive models, such as Deep Neural Network (DNN), Decision Tree (DT), Random Forest (RF), Logistic Regression (LR), Support Vector Classifier (SVM), and K-Nearest Neighbor (KNN). A major challenge machine learning algorithms face is a class imbalance in a dataset, resulting in over-fitting to the available data and, consequently, low accuracy. We use Generative Adversarial Networks (GAN) and Synthetic Minority Over-sampling Technique (SMOTE) to balance the data needed in our proposal. From the experimental results based on accuracy, precision, recall, and F1-Score, the superiority of our model is verified concerning a better classification, with 98.3% accuracy in week 8 using LSTM-GAN, followed by DNN-GAN with 98.1% accuracy.
引用
收藏
页码:5882 / 5898
页数:17
相关论文
共 50 条
  • [21] Short-term wind power prediction based on convolutional long-short-term memory neural networks
    Li R.
    Ma T.
    Zhang X.
    Hui X.
    Liu Y.
    Yin X.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (06): : 304 - 311
  • [22] Dialog State Tracking Using Long Short-term Memory Neural Networks
    Yang, Xiaohao
    Liu, Jia
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 1800 - 1804
  • [23] Deflated reputation using multiplicative long short-term memory neural networks
    Ma, Yixuan
    Zhang, Zhenji
    Li, Deming
    Tang, Mincong
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 118 : 198 - 207
  • [24] An Incremental Learning Approach Using Long Short-Term Memory Neural Networks
    Lemos Neto, Alvaro C.
    Coelho, Rodrigo A.
    de Castro, Cristiano L.
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2022, 33 (05) : 1457 - 1465
  • [25] An Incremental Learning Approach Using Long Short-Term Memory Neural Networks
    Álvaro C. Lemos Neto
    Rodrigo A. Coelho
    Cristiano L. de Castro
    Journal of Control, Automation and Electrical Systems, 2022, 33 : 1457 - 1465
  • [26] Predicting Marimba Stickings Using Long Short-Term Memory Neural Networks
    Chong, Jet Kye
    Correa, Debora
    AI 2022: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, 13728 : 339 - 352
  • [27] SPOKEN LANGUAGE UNDERSTANDING USING LONG SHORT-TERM MEMORY NEURAL NETWORKS
    Yao, Kaisheng
    Peng, Baolin
    Zhang, Yu
    Yu, Dong
    Zweig, Geoffrey
    Shi, Yangyang
    2014 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY SLT 2014, 2014, : 189 - 194
  • [28] Inspection route prediction in substation using long short-term memory networks
    Yang, Yingyi
    Yang, Fan
    Wu, Hao
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 98
  • [29] Tailings Pond Risk Prediction Using Long Short-Term Memory Networks
    Li, Jianwei
    Chen, Haoyu
    Zhou, Ting
    Li, Xiaowen
    IEEE ACCESS, 2019, 7 : 182527 - 182537
  • [30] Location Prediction of Sperm Cells Using Long Short-Term Memory Networks
    Noy, Lioz
    Barnea, Itay
    Dudaie, Matan
    Kamber, Dotan
    Levi, Mattan
    Shaked, Natan T.
    ADVANCED INTELLIGENT SYSTEMS, 2023, 5 (09)