Prediction of Students' Academic Performance in the Programming Fundamentals Course Using Long Short-Term Memory Neural Networks

被引:4
|
作者
Vives, Luis [1 ]
Cabezas, Ivan [2 ]
Vives, Juan Carlos [3 ]
Reyes, Nilton German [4 ]
Aquino, Janet [5 ]
Condor, Jose Bautista [5 ]
Altamirano, S. Francisco Segura
机构
[1] Peruvian Univ Appl Sci, Fac Engn, Lima 15023, Peru
[2] Univ ICESI, Dept Comp & Smart Syst, Cali 760031, Colombia
[3] Univ Senor De Sipan, Profess Sch Elect Mech Engn, Pimentel 150131, Peru
[4] Univ Nacl Pedro Ruiz Gallo, Lambayeque 01131, Peru
[5] Univ Nacl Trujillo, Trujillo 13001, Peru
关键词
Educational data mining; generative adversarial networks; long-short term memory; synthetic minority over-sampling technique;
D O I
10.1109/ACCESS.2024.3350169
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, there has been evidence of a growing interest on the part of universities to know in advance the academic performance of their students and allow them to establish timely strategies to avoid desertion and failure. One of the biggest challenges to predicting student performance is presented in the course "Programming Fundamentals" of Computer Science, Software Engineering, and Information Systems Engineering careers in Peruvian universities for high student dropout rates. The objective of this research was to explore the efficiency of Long-Short Term Memory Networks (LSTM) in the field of Educational Data Mining (EDM) to predict the academic performance of students during the seventh, eighth, twelfth, and sixteenth weeks of the academic semester, which allowed us to identify students at risk of failing the course. This research compares several predictive models, such as Deep Neural Network (DNN), Decision Tree (DT), Random Forest (RF), Logistic Regression (LR), Support Vector Classifier (SVM), and K-Nearest Neighbor (KNN). A major challenge machine learning algorithms face is a class imbalance in a dataset, resulting in over-fitting to the available data and, consequently, low accuracy. We use Generative Adversarial Networks (GAN) and Synthetic Minority Over-sampling Technique (SMOTE) to balance the data needed in our proposal. From the experimental results based on accuracy, precision, recall, and F1-Score, the superiority of our model is verified concerning a better classification, with 98.3% accuracy in week 8 using LSTM-GAN, followed by DNN-GAN with 98.1% accuracy.
引用
收藏
页码:5882 / 5898
页数:17
相关论文
共 50 条
  • [1] Short-Term Traffic Prediction Using Long Short-Term Memory Neural Networks
    Abbas, Zainab
    Al-Shishtawy, Ahmad
    Girdzijauskas, Sarunas
    Vlassov, Vladimir
    2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 57 - 65
  • [2] Prediction of Pathological Tremor Signals Using Long Short-Term Memory Neural Networks
    Pascual-Valdunciel, Alejandro
    Lopo-Martinez, Victor
    Sendra-Arranz, Rafael
    Gonzalez-Sanchez, Miguel
    Perez-Sanchez, Javier Ricardo
    Grandas, Francisco
    Torricelli, Diego
    Moreno, Juan C.
    Oliveira Barroso, Filipe
    Pons, Jose L.
    Gutierrez, Alvaro
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (12) : 5930 - 5941
  • [3] ANALYSIS AND COMPARISON OF LONG SHORT-TERM MEMORY NETWORKS SHORT-TERM TRAFFIC PREDICTION PERFORMANCE
    Dogan, Erdem
    SCIENTIFIC JOURNAL OF SILESIAN UNIVERSITY OF TECHNOLOGY-SERIES TRANSPORT, 2020, 107 : 19 - 32
  • [4] Accurate tsunami wave prediction using long short-term memory based neural networks
    Xu, Hang
    Wu, Huan
    OCEAN MODELLING, 2023, 186
  • [5] Lower Limb Kinematics Trajectory Prediction Using Long Short-Term Memory Neural Networks
    Zaroug, Abdelrahman
    Lei, Daniel T. H.
    Mudie, Kurt
    Begg, Rezaul
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8 (08):
  • [6] Long Short-Term Memory Neural Networks for RNA Viruses Mutations Prediction
    Mohamed, Takwa
    Sayed, Sabah
    Salah, Akram
    Houssein, Essam H.
    Mathematical Problems in Engineering, 2021, 2021
  • [7] Stock price trend prediction with long short-term memory neural networks
    Department of Computer Science and Engineering, Chandigarh College of Engineering and Technology, Sector 26, Chandigarh
    160019, India
    Int. J. Comput. Intell. Stud., 2019, 4 (289-298): : 289 - 298
  • [8] Long Short-Term Memory Neural Networks for RNA Viruses Mutations Prediction
    Mohamed, Takwa
    Sayed, Sabah
    Salah, Akram
    Houssein, Essam H.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [9] Using long short-term memory networks for river flow prediction
    Xu, Wei
    Jiang, Yanan
    Zhang, Xiaoli
    Li, Yi
    Zhang, Run
    Fu, Guangtao
    HYDROLOGY RESEARCH, 2020, 51 (06): : 1358 - 1376
  • [10] ICU Mortality Prediction Using Long Short-Term Memory Networks
    Mili, Manel
    Kerkeni, Asma
    Ben Abdallah, Asma
    Bedoui, Mohamed Hedi
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2022, 2022, 13756 : 242 - 251