MixerNet-SAGA A Novel Deep Learning Architecture for Superior Road Extraction in High-Resolution Remote Sensing Imagery

被引:1
|
作者
Wu, Wei [1 ]
Ren, Chao [2 ]
Yin, Anchao [2 ]
Zhang, Xudong [2 ]
机构
[1] Power China Guiyang Engn Corp Ltd, Guiyang 550081, Peoples R China
[2] Guilin Univ Technol, Coll Geomat & Geoinformat, Guilin 541006, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 18期
基金
中国国家自然科学基金;
关键词
high-resolution remote sensing imagery; road extraction; MixerNet-SAGA; ConvMixer blocks; scaled attention mechanisms; deep learning architectures; NET;
D O I
10.3390/app131810067
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we address the limitations of current deep learning models in road extraction tasks from remote sensing imagery. We introduce MixerNet-SAGA, a novel deep learning model that incorporates the strengths of U-Net, integrates a ConvMixer block for enhanced feature extraction, and includes a Scaled Attention Gate (SAG) for augmented spatial attention. Experimental validation on the Massachusetts road dataset and the DeepGlobe road dataset demonstrates that MixerNet-SAGA achieves a 10% improvement in precision, 8% in recall, and 12% in IoU compared to leading models such as U-Net, ResNet, and SDUNet. Furthermore, our model excels in computational efficiency, being 20% faster, and has a smaller model size. Notably, MixerNet-SAGA shows exceptional robustness against challenges such as same-spectrum-different-object and different-spectrum-same-object phenomena. Ablation studies further reveal the critical roles of the ConvMixer block and SAG. Despite its strengths, the model's scalability to extremely large datasets remains an area for future investigation. Collectively, MixerNet-SAGA offers an efficient and accurate solution for road extraction in remote sensing imagery and presents significant potential for broader applications.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Road Extraction from High-Resolution Remote Sensing Imagery Using Deep Learning
    Xu, Yongyang
    Xie, Zhong
    Feng, Yaxing
    Chen, Zhanlong
    REMOTE SENSING, 2018, 10 (09)
  • [2] Efficient Occluded Road Extraction from High-Resolution Remote Sensing Imagery
    Feng, Dejun
    Shen, Xingyu
    Xie, Yakun
    Liu, Yangge
    Wang, Jian
    REMOTE SENSING, 2021, 13 (24)
  • [3] A new method of road extraction from high-resolution remote sensing imagery
    Ni, Cui
    Guan, Zequn
    Ye, Qin
    SIXTH INTERNATIONAL SYMPOSIUM ON DIGITAL EARTH: MODELS, ALGORITHMS, AND VIRTUAL REALITY, 2010, 7840
  • [4] A Survey of Deep Learning Road Extraction Algorithms Using High-Resolution Remote Sensing Images
    Mo, Shaoyi
    Shi, Yufeng
    Yuan, Qi
    Li, Mingyue
    SENSORS, 2024, 24 (05)
  • [5] Occlusion-Aware Road Extraction Network for High-Resolution Remote Sensing Imagery
    Yang, Ruoyu
    Zhong, Yanfei
    Liu, Yinhe
    Lu, Xiaoyan
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 16
  • [6] Deep Learning Method for Large-Scale Road Extraction from High Resolution Remote Sensing Imagery
    Lu X.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2023, 48 (05): : 821
  • [7] Road Extraction from High-Resolution Remote Sensing Imagery Using Refined Deep Residual Convolutional Neural Network
    Gao, Lin
    Song, Weidong
    Dai, Jiguang
    Chen, Yang
    REMOTE SENSING, 2019, 11 (05)
  • [8] Extraction of snow cover from high-resolution remote sensing imagery using deep learning on a small dataset
    Guo, Xuejun
    Chen, Yin
    Liu, Xiaofeng
    Zhao, Yue
    REMOTE SENSING LETTERS, 2020, 11 (01) : 66 - 75
  • [9] Extraction of Urban Water Bodies from High-Resolution Remote-Sensing Imagery Using Deep Learning
    Chen, Yang
    Fan, Rongshuang
    Yang, Xiucheng
    Wang, Jingxue
    Latif, Aamir
    WATER, 2018, 10 (05)
  • [10] Novel Framework for 3D Road Extraction Based on Airborne LiDAR and High-Resolution Remote Sensing Imagery
    Gao, Lipeng
    Shi, Wenzhong
    Zhu, Jun
    Shao, Pan
    Sun, Sitong
    Li, Yuanyang
    Wang, Fei
    Gao, Fukuan
    REMOTE SENSING, 2021, 13 (23)