Block Sequence Effects on the Self-Assembly Behaviors of Polypeptide-Based Penta-Block Copolymer Hydrogels

被引:1
|
作者
Wang, Ke-Hsin [1 ]
Liu, Chung-Hao [2 ]
Tan, Dun-Heng [1 ]
Nieh, Mu-Ping [2 ,3 ]
Su, Wei-Fang [1 ,4 ]
机构
[1] Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 10617, Taiwan
[2] Univ Connecticut, Inst Mat Sci, Polymer Program, Storrs, CT 06269 USA
[3] Univ Connecticut, Dept Chem & Biomol Engn, Storrs, CT 06269 USA
[4] Ming Chi Univ Technol, Dept Mat Engn, New Taipei City 243303, Taiwan
关键词
hydrogel; block copolymer; self-assembly; micelle; peptide; small-angle X-ray scattering; GEL-PERMEATION CHROMATOGRAPHY; POLY(GAMMA-BENZYL L-GLUTAMATE); COPOLYPEPTIDE HYDROGELS; MULTIBLOCK COPOLYMERS; SECONDARY STRUCTURE; CELLS; THERMOSENSITIVITY; STABILITY; SURFACES; ADHESION;
D O I
10.1021/acsami.3c18954
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Peptide-based hydrogels have great potential for applications in tissue engineering, drug delivery, and so on. We systematically synthesize, characterize, and investigate the self-assembly behaviors of a series of polypeptide-based penta-block copolymers by varying block sequences and lengths. The copolymers contain hydrophobic blocks of poly(gamma-benzyl-l-glutamate) (PBG, B-x) and two kinds of hydrophilic blocks, poly(l-lysine) (PLL, K-y) and poly(ethylene glycol) (PEG, EG(34)), where x and y are the number of repeating units of each block, where PBG and PLL blocks have unique functions for nerve regeneration and cell adhesion. It shows that a sufficient length of the middle hydrophilic segment capped with hydrophobic end PBG blocks is required. They first self-assemble into flower-like micelles and sequentially form transparent hydrogels (as low as 2.3 wt %) with increased polymer concentration. The hydrogels contain a microscale porous structure, a desired property for tissue engineering to facilitate the access of nutrient flow for cell growth and drug delivery systems with high efficiency of drug storage. We hypothesize that the structure of B-x-K-y-EG(34)-K-y-B-x agglomerates is beyond micron size (transparent), while that of K-y-B-x-EG(34)-B-x-K-y is on the submicron scale (opaque). We establish a working strategy to synthesize a polypeptide-based block copolymer with a wide window of sol-gel transition. The study offers insight into rational polypeptide hydrogel design with specific morphology, exploring the novel materials as potential candidates for neural tissue engineering.
引用
收藏
页码:6674 / 6686
页数:13
相关论文
共 50 条
  • [21] Polyelectrolyte complex micelles by self-assembly of polypeptide-based triblock copolymer for doxorubicin delivery
    Kim, Jeong Hwan
    Ramasamy, Thiruganesh
    Tran, Tuan Hiep
    Choi, Ju Yeon
    Cho, Hyuk Jun
    Yong, Chul Soon
    Kim, Jong Oh
    ASIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2014, 9 (04) : 191 - 198
  • [22] Charge effects on the self-assembly of protein block copolymer nanostructures
    Olsen, Bradley
    Lam, Christopher
    Chang, Dongsook
    Kim, Minkyu
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [23] The effects of molecular weight dispersity on block copolymer self-assembly
    Buckinx, Axel-Laurenz
    Rubens, Maarten
    Cameron, Neil R.
    Bakkali-Hassani, Camille
    Sokolova, Anna
    Junkers, Tanja
    POLYMER CHEMISTRY, 2022, 13 (23) : 3444 - 3450
  • [24] Optical Nanoimaging for Block Copolymer Self-Assembly
    Yan, Jie
    Zhao, Ling-Xi
    Li, Chong
    Hu, Zhe
    Zhang, Guo-Feng
    Chen, Ze-Qiang
    Chen, Tao
    Huang, Zhen-Li
    Zhu, Jintao
    Zhu, Ming-Qiang
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (07) : 2436 - 2439
  • [25] Superlattice by charged block copolymer self-assembly
    Jimin Shim
    Frank S. Bates
    Timothy P. Lodge
    Nature Communications, 10
  • [26] Block copolymer self-assembly in ionic liquids
    Tamate, Ryota
    Hashimoto, Kei
    Ueki, Takeshi
    Watanabe, Masayoshi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (39) : 25123 - 25139
  • [27] Self-assembly of block copolymer thin films
    Albert, Julie N. L.
    Epps, Thomas H., III
    MATERIALS TODAY, 2010, 13 (06) : 24 - 33
  • [28] Nanopatterning Biomolecules by Block Copolymer Self-Assembly
    Killops, Kato L.
    Gupta, Nalini
    Dimitriou, Michael D.
    Lynd, Nathaniel A.
    Jung, Hyunjung
    Tran, Helen
    Bang, Joona
    Campos, Luis M.
    ACS MACRO LETTERS, 2012, 1 (06) : 758 - 763
  • [29] SELF-ASSEMBLY IN AQUEOUS BLOCK COPOLYMER SOLUTIONS
    MALMSTEN, M
    LINDMAN, B
    MACROMOLECULES, 1992, 25 (20) : 5440 - 5445
  • [30] Block Copolymer Controlled Nanoparticle Self-assembly
    Ma, Shi-ying
    Wang, Rong
    ACTA POLYMERICA SINICA, 2016, (08): : 1030 - 1041