A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity

被引:3
|
作者
Bravi, Barbara [1 ,2 ]
Di Gioacchino, Andrea [2 ]
Fernandez-de-Cossio-Diaz, Jorge [2 ]
Walczak, Aleksandra M. [2 ]
Mora, Thierry [2 ]
Cocco, Simona [2 ]
Monasson, Remi [2 ]
机构
[1] Imperial Coll London, Dept Math, London, England
[2] Sorbonne Univ, Univ PSL, Univ Paris Cite, Lab Phys,Ecole Normale Super,ENS,CNRS, Paris, France
来源
ELIFE | 2023年 / 12卷
基金
欧洲研究理事会;
关键词
machine learning; immune response; immunogenicity; Human; SELECTION; EVOLUTION; MHC;
D O I
10.7554/eLife.85126
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Antigen immunogenicity and the specificity of binding of T-cell receptors to antigens are key properties underlying effective immune responses. Here we propose diffRBM, an approach based on transfer learning and Restricted Boltzmann Machines, to build sequence-based predictive models of these properties. DiffRBM is designed to learn the distinctive patterns in amino-acid composition that, on the one hand, underlie the antigen's probability of triggering a response, and on the other hand the T-cell receptor's ability to bind to a given antigen. We show that the patterns learnt by diffRBM allow us to predict putative contact sites of the antigen-receptor complex. We also discriminate immunogenic and non-immunogenic antigens, antigen-specific and generic receptors, reaching performances that compare favorably to existing sequence-based predictors of antigen immunogenicity and T-cell receptor specificity.
引用
收藏
页数:35
相关论文
共 50 条
  • [32] ANTIGEN-SPECIFIC REGULATORY T-CELL FACTORS AND THE T-CELL RECEPTOR
    GREEN, DR
    ZHENG, H
    RESEARCH IN IMMUNOLOGY, 1989, 140 (03): : 294 - 298
  • [33] T cell receptor sequence clustering and antigen specificity
    Vujovic, Milena
    Degn, Kristine Fredlund
    Marin, Frederikke Isa
    Schaap-Johansen, Anna-Lisa
    Chain, Benny
    Andresen, Thomas Lars
    Kaplinsky, Joseph
    Marcatili, Paolo
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 2166 - 2173
  • [34] A sharp T-cell antigen receptor signaling threshold for T-cell proliferation
    Au-Yeung, Byron B.
    Zikherman, Julie
    Mueller, James L.
    Ashouri, Judith F.
    Matloubian, Mehrdad
    Cheng, Debra A.
    Chen, Yiling
    Shokat, Kevan M.
    Weiss, Arthur
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (35) : E3679 - E3688
  • [35] Redirected antigen specificity by gene transfer of T cell receptor (TCR) complexes into αβ and γδ T cells.
    Heemskerk, MHM
    de Paus, RA
    Willemze, R
    Falkenburg, JHF
    BLOOD, 2000, 96 (11) : 211A - 211A
  • [36] Deep learning-based prediction of the T cell receptor–antigen binding specificity
    Tianshi Lu
    Ze Zhang
    James Zhu
    Yunguan Wang
    Peixin Jiang
    Xue Xiao
    Chantale Bernatchez
    John V. Heymach
    Don L. Gibbons
    Jun Wang
    Lin Xu
    Alexandre Reuben
    Tao Wang
    Nature Machine Intelligence, 2021, 3 : 864 - 875
  • [37] Chimeric antigen receptor T-cell therapy
    Burge, Cale
    Vanguru, Vinay
    Ho, Phoebe Joy
    AUSTRALIAN PRESCRIBER, 2023, 46 (02) : 36 - 39
  • [38] Chimeric antigen receptor T-cell toxicity
    Baymon, DaMarcus E.
    Boyer, Edward W.
    CURRENT OPINION IN PEDIATRICS, 2019, 31 (02) : 251 - 255
  • [39] THE T-CELL ANTIGEN RECEPTOR - PARADIGM REGAINED
    HOWARD, J
    IMMUNOLOGY TODAY, 1984, 5 (07): : 188 - 189
  • [40] FOCUSING ON THE HUMAN T-CELL RECEPTOR FOR ANTIGEN
    GRUNEWALD, J
    SARCOIDOSIS, 1994, 11 (01): : 61 - 65