Fluid flow and heat transfer analysis of a ternary aqueous Fe3O4 + MWCNT + Cu/H2O magnetic nanofluid in an inclined rectangular porous cavity

被引:19
|
作者
Thirumalaisamy, K. [1 ]
Sivaraj, R. [2 ]
Reddy, A. Subramanyam [1 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
[2] Dr BR Ambedkar Natl Inst Technol, Dept Math, Jalandhar 144011, Punjab, India
关键词
Magnetized ternary nanofluid; Rectangular porous cavity; Heat source/sink; Joule heating; Viscous dissipation; MHD MIXED CONVECTION; NATURAL-CONVECTION; TRANSFER ENHANCEMENT; ENTROPY GENERATION; DRIVEN CAVITY; NANOFLUID; SIMULATION; ENCLOSURE; WATER;
D O I
10.1016/j.jmmm.2023.171503
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The natural convective flow and heat transfer efficiency within a cavity have been utilized in various applications, such as solar collectors, heat exchangers, and cooling electronic devices. Ternary nanofluids have higher heat transfer features than nanofluids. Motivated by the aforementioned applications, the current study investigates the natural convective flow and thermal efficiency features of Fe3O4 + MWCNT + Cu/H2O electroconductive ternary nanofluid-filled inclined, partially heated rectangular porous cavity under the impacts of an inclined magnetic field, heat source/sink, Joule heating, a resistance porous medium, and viscous dissipation. Additionally, to examine the best heat transfer rate performance of ternary nanofluids, different combinations of aqueous-based ferromagnetic, metallic, and carbon-based nanoparticles' are also scrutinized. The considered system of equations with suitable initial-boundary conditions is solved by the Marker and Cell method. The results reveal that pertinent parameters such as Darcy number, Rayleigh number, cavity inclination angle, nanoparticle volume fraction, and heat source/sink have significant impacts on the convective flow regime. The investigation reflects that in the presence of a heat source, by augmenting the Fe3O4(33.3%), MWCNT(33.3%), and Cu(33.3%) nanoparticles' volume fractions from 1% to 5%, the average heat transfer rate is increased by 7.49%. By considering Fe3O4(10%),MWCNT(45%), and Cu(45%) nanoparticles, the average heat transfer rate can be increased up to 8.95%. Fe3O4(10%) + MWCNT(45%) + Cu(45%)/H2O ternary nanofluids deliver the highest, and Fe3O4(45%) + MWCNT(45%) + Cu(10%)/H2O ternary nanofluids produce the lowest rate of heat transfer among the other combinations of ternary nanofluids. This outcome ensures that a suitable combination of nanoparticles extensively improves the heat transfer characteristics of the base fluids.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] A computational fluid dynamics analysis on Fe3O4-H2O based nanofluid axisymmetric flow over a rotating disk with heat transfer enhancement
    Farooq, Umar
    Hassan, Ali
    Fatima, Nahid
    Imran, Muhammad
    Alqurashi, M. S.
    Noreen, Sobia
    Akgul, Ali
    Bariq, Abdul
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [22] Numerical modeling on hybrid nanofluid (Fe3O4+MWCNT/H2O) migration considering MHD effect over a porous cylinder
    Shah, Zahir
    Saeed, Anwar
    Khan, Imran
    M. Selim, Mahmoud
    Ikramullah
    Kumam, Poom
    PLOS ONE, 2021, 16 (07):
  • [23] Magnetized Flow of Cu + Al2O3 + H2O Hybrid Nanofluid in Porous Medium: Analysis of Duality and Stability
    Lund, Liaquat Ali
    Omar, Zurni
    Dero, Sumera
    Khan, Ilyas
    Baleanu, Dumitru
    Nisar, Kottakkaran Sooppy
    SYMMETRY-BASEL, 2020, 12 (09):
  • [24] Experimental investigation into heat transfer and flow characteristics of magnetic hybrid nanofluid (Fe3O4/TiO2) in turbulent region
    Adogbeji, Victor O.
    Sharifpur, Mohsen
    Meyer, Josua P.
    APPLIED THERMAL ENGINEERING, 2025, 258
  • [25] Investigating the convection heat transfer of Fe3O4 nanofluid in a porous metal foam tube under constant magnetic field
    Amani, Mohammad
    Ameri, Mohammad
    Kasaeian, Alibakhsh
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2017, 82 : 439 - 449
  • [26] Heat transfer analysis of Cu-H2O/Al2O3-H2O nanofluid flow in wavy/microchannels: A review
    Sharma, Tarun
    Sharma, Pooja
    MODERN PHYSICS LETTERS B, 2024,
  • [27] Convective heat transfer and friction factor of aqueous Fe3O4 nanofluid flow under laminar regimeAn experimental investigation
    Mojtaba Hosseinzadeh
    Saeed Zeinali Heris
    Amir Beheshti
    Mehdi Shanbedi
    Journal of Thermal Analysis and Calorimetry, 2016, 124 : 827 - 838
  • [28] Experimental Investigation of the Fe3O4 Nanofluid Heat Transfer in a Helical Coil
    Razaghi, Morteza
    Abedini Esfahlani, Ahad
    Kargarsharifabad, Hadi
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2021, 35 (03) : 589 - 599
  • [29] An analytical solution for radioactive MHD flow TiO2–Fe3O4/H2O nanofluid and its biological applications
    Elangovan K.
    Subbarao K.
    Gangadhar K.
    International Journal of Ambient Energy, 2022, 43 (01) : 7576 - 7587
  • [30] A Novel Hybrid Model for Cu-Al2O3/H2O Nanofluid Flow and Heat Transfer in Convergent/Divergent Channels
    Khan, Umar
    Adnan
    Ahmed, Naveed
    Mohyud-Din, Syed Tauseef
    Baleanu, Dumitru
    Ilyas Khan
    Nisar, Kottakkaran Sooppy
    ENERGIES, 2020, 13 (07)