Computer vision-based approach for skeleton-based action recognition, SAHC

被引:1
|
作者
Shujah Islam, M. [1 ]
机构
[1] King Faisal Univ, Coll Comp Sci & Informat Technol, Al Hufuf 31982, Al Ahsa, Saudi Arabia
关键词
Computer vision; Machine learning; Skeleton-based action recognition; Human action recognition; Artificial intelligence;
D O I
10.1007/s11760-023-02829-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Given their small size and low weight, skeleton sequences are a great option for joint-based action detection. Recent skeleton-based action recognition techniques use feature extraction from 3D joint coordinates as per spatial-temporal signals, fusing these exemplifications in a motion context to improve identification accuracy. High accuracy has been achieved with the use of first- and second-order characteristics, such as spatial, angular, and hough representations. In contrast to the and hough transform, which are useful for encoding summarized independent joint coordinates motion, the spatial, and angular features all higher-order representations are discussed in this article for encoding the static and velocity domains of 3D joints. When used to represent relative motion between body parts in the human body, the encoding is effective and remains constant across a wide range of individual body sizes. However, many models still become confused when presented with activities that have a similar trajectory. Suggest addressing these problems by integrating spatial, angular, and hough encoding as relevant order elements into contemporary systems to more accurately reflect the interdependencies between components. By combining these widely-used spatial-temporal characteristics into a single framework SAHC, acquired state-of-the-art performance on four different benchmark datasets with fewer parameters and less batch processing.
引用
收藏
页码:1343 / 1354
页数:12
相关论文
共 50 条
  • [31] Pose Encoding for Robust Skeleton-Based Action Recognition
    Demisse, Girum G.
    Papadopoulos, Konstantinos
    Aouada, Djamila
    Ottersten, Bjorn
    PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 301 - 307
  • [32] Hypergraph Neural Network for Skeleton-Based Action Recognition
    Hao, Xiaoke
    Li, Jie
    Guo, Yingchun
    Jiang, Tao
    Yu, Ming
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 2263 - 2275
  • [33] Skeleton-based Action Recognition for Industrial Packing Process
    Chen, Zhenhui
    Hu, Haiyang
    Li, Zhongjin
    Qi, Xingchen
    Zhang, Haiping
    Hu, Hua
    Chang, Victor
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS, BIG DATA AND SECURITY (IOTBDS), 2020, : 36 - 45
  • [34] Skeleton MixFormer: Multivariate Topology Representation for Skeleton-based Action Recognition
    Xin, Wentian
    Miao, Qiguang
    Liu, Yi
    Liu, Ruyi
    Pun, Chi-Man
    Shi, Cheng
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2211 - 2220
  • [35] Skeleton-based action recognition based on multidimensional adaptive convolutional network
    Xia, Yu
    Gao, Qingyuan
    Wu, Weiguan
    Cao, Yi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [36] Skeleton-based Action Recognition Based on Deep Learning and Grassmannian Pyramids
    Konstantinidis, Dimitrios
    Dimitropoulos, Kosmas
    Daras, Petros
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 2045 - 2049
  • [37] Hybrid features for skeleton-based action recognition based on network fusion
    Chen, Zhangmeng
    Pan, Junjun
    Yang, Xiaosong
    Qin, Hong
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2020, 31 (4-5)
  • [38] Action Tree Convolutional Networks: Skeleton-Based Human Action Recognition
    Liu, Wenjie
    Zhang, Ziyi
    Han, Bing
    Zhu, Chenhui
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT III, 2018, 11166 : 783 - 792
  • [39] Transformer for Skeleton-based action recognition: A review of recent advances
    Xin, Wentian
    Liu, Ruyi
    Liu, Yi
    Chen, Yu
    Yu, Wenxin
    Miao, Qiguang
    NEUROCOMPUTING, 2023, 537 : 164 - 186
  • [40] Constructing Stronger and Faster Baselines for Skeleton-Based Action Recognition
    Song, Yi-Fan
    Zhang, Zhang
    Shan, Caifeng
    Wang, Liang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (02) : 1474 - 1488