Hyaluronic Acid-Based Reactive Oxygen Species-Responsive Multifunctional Injectable Hydrogel Platform Accelerating Diabetic Wound Healing

被引:40
|
作者
Shi, Chen [1 ]
Zhang, Ying [2 ]
Wu, Guanfu [3 ]
Zhu, Zhangyu [1 ]
Zheng, Haiping [3 ]
Sun, Ximeng [3 ]
Heng, Yongyuan [3 ]
Pan, Shaowei [1 ]
Xiu, Haonan [1 ]
Zhang, Jing [3 ]
Yin, Zhaowei [1 ]
Yu, Ziyi [3 ]
Liang, Bin [1 ]
机构
[1] Nanjing Med Univ, Nanjing Hosp 1, Dept Orthopaed, 68 Changle Rd, Nanjing 210006, Peoples R China
[2] Nanjing Med Univ, Nanjing Hosp 1, Dept Endocrinol, Nanjing 210006, Peoples R China
[3] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, 30 Puzhu South Rd, Nanjing 211816, Peoples R China
基金
中国国家自然科学基金;
关键词
antioxidants; diabetic wounds; hydrogels; inflammation; reactive oxygen species; SILVER NANOPARTICLES; ANTIBACTERIAL; CYTOTOXICITY; GENOTOXICITY; INFLAMMATION; MACROPHAGE; DELIVERY; ALPHA;
D O I
10.1002/adhm.202302626
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Diabetic wounds are more likely to develop into complex and severe chronic wounds. The objective of this study is to develop and assess a reactive oxygen species (ROS)-responsive multifunctional injectable hydrogel for the purpose of diabetic wound healing. A multifunctional hydrogel (HA@Cur@Ag) is successfully synthesized with dual antioxidant, antibacterial, and anti-inflammatory properties by crosslinking thiol hyaluronic acid (SH-HA) and disulfide-bonded hyperbranched polyethylene glycol (HB-PBHE) through Michael addition; while, incorporating curcumin liposomes and silver nanoparticles (AgNPs). The HA@Cur@Ag hydrogel exhibits favorable biocompatibility, degradability, and injectivity. The outcomes of in vitro and in vivo experiments demonstrate that the hydrogel can effectively be loaded with and release curcumin liposomes, as well as silver ions, thereby facilitating diabetic wound healing through multiple mechanisms, including ROS scavenging, bactericidal activity, anti-inflammatory effects, and the promotion of angiogenesis. Transcriptome sequencing reveals that the HA@Cur@Ag hydrogel effectively suppresses the activation of the tumour necrosis factor (TNF)/nuclear factor kappa B (NF-kappa B) pathway to ameliorate oxidative stress and inflammation in diabetic wounds. These findings suggest that this ROS-responsive multifunctional injectable hydrogel, which possesses the ability to precisely coordinate and integrate intricate biological and molecular processes involved in wound healing, exhibits notable potential for expediting diabetic wound healing. The HA@Cur@Ag hydrogel is demonstrated as a reactive oxygen species (ROS)-responsive multifunctional injectable hydrogel. The hydrogel exhibits favorable biocompatibility, degradability, and injectivity. It can effectively be loaded with and release curcumin liposomes and AgNPs. This hydrogel accelerates diabetic wound healing through multiple mechanisms, including ROS scavenging, bactericidal activity, anti-inflammatory effects, and the promotion of angiogenesis.image
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Polylactic acid-based electrospun fiber and hyaluronic acid-valsartan hydrogel scaffold for chronic wound healing
    Margaret O. Ilomuanya
    Prosper S. Okafor
    Joyce N. Amajuoyi
    John C. Onyejekwe
    Omotunde O. Okubanjo
    Samson O. Adeosun
    Boladale O. Silva
    Beni-Suef University Journal of Basic and Applied Sciences, 9
  • [42] Polylactic acid-based electrospun fiber and hyaluronic acid-valsartan hydrogel scaffold for chronic wound healing
    Ilomuanya, Margaret O.
    Okafor, Prosper S.
    Amajuoyi, Joyce N.
    Onyejekwe, John C.
    Okubanjo, Omotunde O.
    Adeosun, Samson O.
    Silva, Boladale O.
    BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES, 2020, 9 (01)
  • [43] Injectable adaptive self-healing hyaluronic acid/poly (γ-glutamic acid) hydrogel for cutaneous wound healing
    Yang, Rong
    Liu, Xin
    Ren, Yanhan
    Xue, Wenliang
    Liu, Shuai
    Wang, Penghui
    Zhao, Ming
    Xu, Hong
    Chi, Bo
    ACTA BIOMATERIALIA, 2021, 127 : 102 - 115
  • [44] Hyaluronic Acid-Based Wound Dressing with Antimicrobial Properties for Wound Healing Application
    Della Sala, Francesca
    Longobardo, Gennaro
    Fabozzi, Antonio
    di Gennaro, Mario
    Borzacchiello, Assunta
    APPLIED SCIENCES-BASEL, 2022, 12 (06):
  • [45] Self-crosslinking hyaluronic acid-based hydrogel with promoting vascularization and ROS scavenging for wound healing
    Zhang, Wenning
    Wang, Han
    Pang, Jie
    Huang, Yadong
    Li, Hang
    Tang, Shunqing
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 278
  • [46] Multifunctional photothermally responsive hydrogel as an effective whole-process management platform to accelerate chronic diabetic wound healing
    He, Dengfeng
    Liao, Chunyan
    Li, Pengfei
    Liao, Xiaoming
    Zhang, Shiyong
    ACTA BIOMATERIALIA, 2024, 174 : 153 - 162
  • [47] Hyaluronic Acid-Bilirubin Nanoparticles as a Tumor Microenvironment Reactive Oxygen Species-Responsive Nanomedicine for Targeted Cancer Therapy
    Lee, Seonju
    Lee, Seon Ah
    Shinn, Jongyoon
    Lee, Yonghyun
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2024, 19 : 4893 - 4906
  • [48] An amino acid-based gelator for injectable and multi-responsive hydrogel
    Xiong, Wei
    Zhou, Hantao
    Zhang, Chong
    Lu, Hua
    CHINESE CHEMICAL LETTERS, 2017, 28 (11) : 2125 - 2128
  • [49] A hyaluronic acid hydrogel as a mild photothermal antibacterial, antioxidant, and nitric oxide release platform for diabetic wound healing
    He, Changyuan
    Bi, Siwei
    Zhang, Rongya
    Chen, Chong
    Liu, Ruiqi
    Zhao, Xueshan
    Gu, Jun
    Yan, Bin
    JOURNAL OF CONTROLLED RELEASE, 2024, 370 : 543 - 555
  • [50] An amino acid-based gelator for injectable and multi-responsive hydrogel
    Wei Xiong
    Hantao Zhou
    Chong Zhang
    Hua Lu
    Chinese Chemical Letters, 2017, 28 (11) : 2125 - 2128