Advances in harvesting water and energy from ubiquitous atmospheric moisture

被引:49
|
作者
Lu, Wanheng [1 ]
Ong, Wei Li [1 ]
Ho, Ghim Wei [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
[2] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117575, Singapore
关键词
%moisture - Atmospheric moisture - Atmospheric water - Energy generations - Harvesting energies - Harvesting waters - Water and energies - Water harvesting - Water moisture - Water potential;
D O I
10.1039/d2ta09552a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atmospheric moisture contains huge amounts of water and energy potential, which, benefiting from the advances of nanomaterials, hold great promise in delivering circular economies for the prevalent interwoven water and energy crises. Atmospheric water harvesting (AWH) and moisture-enabled energy generation (MEEG), emerging technologies capable of extracting water and energy from moisture are rapidly developing and advancing toward distributed and decentralized systems. In this review, sorbent-assisted AWH and moisture-enabled energy generation are reviewed in parallel, revealing the correlation between these two technologies. Sorbent-assisted AWH and MEEG are found to be inextricably linked in view of the similarities between both technologies with respect to the moisture/material interactions and basic material prerequisites. Mechanisms, innovative material and structural designs, as well as recent progress in developing devices, are critically discussed. Besides, AWH infrastructures integrated with renewable solar energy for water harvesting and other forms of energy conversion are covered, featuring sought-after energy efficiency and multifunctionality. Furthermore, future directions for water and energy harvesting from moisture are outlined, encompassing scientific research and practical applications.
引用
收藏
页码:12456 / 12481
页数:26
相关论文
共 50 条
  • [31] Atmospheric heat and moisture transport to energy- and water-limited ecosystems
    Schumacher, Dominik L.
    Keune, Jessica
    Miralles, Diego G.
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 2020, 1472 (01) : 123 - 138
  • [32] Thermodynamic limits of atmospheric water harvesting
    Rao, Akshay K.
    Fix, Andrew J.
    Yang, Yun Chi
    Warsinger, David M.
    ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (10) : 4025 - 4037
  • [33] Progress and Expectation of Atmospheric Water Harvesting
    Tu, Yaodong
    Wang, Ruzhu
    Zhang, Yannan
    Wang, Jiayun
    JOULE, 2018, 2 (08) : 1452 - 1475
  • [34] Porous Materials for Atmospheric Water Harvesting
    Zhang, Shuai
    Fu, Jingru
    Xing, Guolong
    Zhu, Weidong
    Ben, Teng
    CHEMISTRYOPEN, 2023, 12 (05)
  • [35] Chemistries and materials for atmospheric water harvesting
    Lei, Chuxin
    Guan, Weixin
    Zhao, Yaxuan
    Yu, Guihua
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (14) : 7328 - 7362
  • [36] Reviews of atmospheric water harvesting technologies
    Tu, Rang
    Hwang, Yunho
    ENERGY, 2020, 201
  • [37] Materials and devices for atmospheric water harvesting
    Meng, Yongtao
    Dang, Yanliu
    Suib, Steven L.
    CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (07):
  • [38] Low water activity materials for moisture harvesting
    Ferdousi, Shammi
    Yeung, King
    Liu, Zhang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [39] RF Energy Harvesting for Ubiquitous, Zero Power Wireless Sensors
    Saeed, Warda
    Shoaib, Nosherwan
    Cheema, Hammad M.
    Khan, Muhammad U.
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2018, 2018
  • [40] Hygroscopic photothermal sorbents for atmospheric water harvesting: From preparation to applications
    He, Jiawen
    Yu, Haojie
    Wang, Li
    Yang, Jian
    Zhang, Yanhui
    Huang, Wenbing
    Ouyang, Chenguang
    EUROPEAN POLYMER JOURNAL, 2024, 202