Predictive Model for Preeclampsia Combining sFlt-1, PlGF, NT-proBNP, and Uric Acid as Biomarkers

被引:3
|
作者
Garrido-Gimenez, Carmen [1 ,2 ,3 ,4 ]
Cruz-Lemini, Monica [1 ,2 ,3 ,4 ]
Alvarez, Francisco V. [5 ,6 ]
Nan, Madalina Nicoleta [7 ]
Carretero, Francisco [5 ,6 ,8 ]
Fernandez-Oliva, Antonio [1 ,2 ]
Mora, Josefina [7 ]
Sanchez-Garcia, Olga [2 ,3 ,4 ]
Garcia-Osuna, Alvaro [7 ]
Alijotas-Reig, Jaume [9 ,10 ]
Llurba, Elisa [1 ,2 ,3 ,4 ]
机构
[1] Univ Autonoma Barcelona, Hosp Santa Creu & St Pau, Dept Obstet & Gynecol, Maternal Fetal Med Unit, St Antoni Maria Claret 167, Barcelona 08025, Spain
[2] Inst Invest Biomed St Pau, Women & Perinatal Hlth Res Grp, St Quinti 77-79, Barcelona 08041, Spain
[3] Inst Salud Carlos III, Primary Care Intervent Prevent Maternal & Child C, SAMID RICORS, RD21 0012, Madrid 28040, Spain
[4] Inst Salud Carlos III, Maternal & Child Hlth Dev Network SAMID RD16 0022, Madrid 28040, Spain
[5] Univ Oviedo, Hosp Univ Cent Asturias, Lab Med, Clin Biochem, Oviedo 33011, Spain
[6] Univ Oviedo, Dept Biochem & Mol Biol, Oviedo 33011, Spain
[7] Univ Autonoma Barcelona, Hosp Santa Creu & St Pau, Clin Biochem, Barcelona 08025, Spain
[8] Univ Oviedo, Catedra Inteligencia Analit, Oviedo 33011, Spain
[9] Univ Autonoma Barcelona, Vall dHebron Univ Hosp, Internal Med Dept, Syst Autoimmune Dis Unit,Dept Med, Barcelona 08025, Spain
[10] Vall dHebron Hosp, Vall dHebron Res Inst, Syst Autoimmune Dis Res Grp, Barcelona 08025, Spain
关键词
angiogenic factors; machine-learning; N-terminal pro-brain natriuretic peptide (NT-proBNP); placental growth factor (PlGF); prediction; preeclampsia; soluble fms-like tyrosine kinase 1 (sFlt-1); uric acid; GROWTH-FACTOR RATIO; BRAIN NATRIURETIC PEPTIDE; HYPERTENSIVE DISORDERS; TYROSINE KINASE-1; WOMEN; PREGNANCY; FETAL; DELIVERY; VALUES; SERUM;
D O I
10.3390/jcm12020431
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
N-terminal pro-brain natriuretic peptide (NT-proBNP) and uric acid are elevated in pregnancies with preeclampsia (PE). Short-term prediction of PE using angiogenic factors has many false-positive results. Our objective was to validate a machine-learning model (MLM) to predict PE in patients with clinical suspicion, and evaluate if the model performed better than the sFlt-1/PlGF ratio alone. A multicentric cohort study of pregnancies with suspected PE between 24(+0) and 36(+6) weeks was used. The MLM included six predictors: gestational age, chronic hypertension, sFlt-1, PlGF, NT-proBNP, and uric acid. A total of 936 serum samples from 597 women were included. The PPV of the MLM for PE following 6 weeks was 83.1% (95% CI 78.5-88.2) compared to 72.8% (95% CI 67.4-78.4) for the sFlt-1/PlGF ratio. The specificity of the model was better; 94.9% vs. 91%, respectively. The AUC was significantly improved compared to the ratio alone [0.941 (95% CI 0.926-0.956) vs. 0.901 (95% CI 0.880-0.921), p < 0.05]. For prediction of preterm PE within 1 week, the AUC of the MLM was 0.954 (95% CI 0.937-0.968); significantly greater than the ratio alone [0.914 (95% CI 0.890-0.934), p < 0.01]. To conclude, an MLM combining the sFlt-1/PlGF ratio, NT-proBNP, and uric acid performs better to predict preterm PE compared to the sFlt-1/PlGF ratio alone, potentially increasing clinical precision.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] The expression of serum sEGFR, sFlt-1, sEndoglin and PLGF in preeclampsia
    Cui, Lifeng
    Shu, Chang
    Liu, Zitao
    Tong, Weihua
    Cui, Miao
    Wei, Chengguo
    Tang, Jian Jenny
    Liu, Xiufen
    Hu, Jinghai
    Jiang, Jing
    He, Jin
    Zhang, David Y.
    Ye, Fei
    Li, Yulin
    PREGNANCY HYPERTENSION-AN INTERNATIONAL JOURNAL OF WOMENS CARDIOVASCULAR HEALTH, 2018, 13 : 127 - 132
  • [22] Predictive value of sFlt-1, PlGF, sFlt-1/PlGF ratio and PAPP-A for late-onset preeclampsia and IUGR between 32 and 37 weeks of pregnancy
    Birdir, C.
    Droste, L.
    Fox, L.
    Frank, M.
    Fryze, J.
    Enekwe, A.
    Koeninger, A.
    Kimmig, R.
    Schmidt, B.
    Gellhaus, A.
    PREGNANCY HYPERTENSION-AN INTERNATIONAL JOURNAL OF WOMENS CARDIOVASCULAR HEALTH, 2018, 12 : 124 - 128
  • [23] Comparison of mean platelet volume (MPV) and sFlt-1/PlGF ratio as predictive markers for preeclampsia
    Mayer-Pickel, Karoline
    Stern, Christina
    Eberhard, Katharina
    Lang, Uwe
    Obermayer-Pietsch, Barbara
    Cervar-Zivkovic, Mila
    JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2021, 34 (09): : 1407 - 1414
  • [24] Clinical implementation of sFlt-1 and PLGF assays for preeclampsia diagnosis
    Yip, P. M.
    Miller, J.
    Higgins, V.
    Fu, L.
    CLINICA CHIMICA ACTA, 2024, 558
  • [25] Use of serum and urinary soluble sFlt-1 and PLGF in the diagnosis of preeclampsia
    Tang, Ping
    Xu, Jing
    Xie, Bao-jun
    Wang, Qi-mei
    HYPERTENSION IN PREGNANCY, 2017, 36 (01) : 48 - 52
  • [26] Biochemical Markers, sFLT-1/PlGF, Aid in the Diagnostic Odyssey of Preeclampsia
    Strickland, Sydney Webb
    Zhu, Yusheng
    JOURNAL OF APPLIED LABORATORY MEDICINE, 2023, 8 (03): : 440 - 442
  • [27] SFLT-1, VEGF, and PLGF levels in the cerebrospinal fluid of women with preeclampsia
    Foyouzi, N
    Norwitz, E
    Tsen, L
    Buhimschi, C
    Buhimschi, I
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2004, 191 (06) : S33 - S33
  • [28] INVESTIGATING THE ECONOMIC IMPACT OF SFLT-1/PLGF RATIO AS A PREDICTIVE TEST IN WOMEN WITH SUSPECTED PREECLAMPSIA IN ITALY
    Paolini, D.
    Dionisi, M.
    Frusca, T.
    Gervasi, M. T.
    Boscaini, S.
    Cetin, I
    VALUE IN HEALTH, 2016, 19 (07) : A688 - A688
  • [29] A dynamic prediction model for preeclampsia using the sFlt-1/PLGF ratio combined with multiple factors
    Chen, Guili
    Chen, Yuanyuan
    Shi, Yao
    Mao, Zhoufen
    Lou, Jiaqi
    Ma, Jianting
    BMC PREGNANCY AND CHILDBIRTH, 2024, 24 (01)
  • [30] PLGF and SFLT-1 as potential biomarkers panel useful in glioma diagnosis
    Koper-Lenkiewicz, O. M.
    Kaminska, J.
    Sawicki, K.
    Jadeszko, M.
    Mariak, Z.
    Bojanowska, A.
    Matowicka-Karna, J.
    Dymicka-Piekarska, V.
    CLINICA CHIMICA ACTA, 2019, 493 : S124 - S124