Generalizations of the Erds-Kac Theorem and the Prime Number Theorem

被引:0
|
作者
Wang, Biao [1 ]
Wei, Zhining [2 ]
Yan, Pan [3 ]
Yi, Shaoyun [4 ]
机构
[1] Chinese Acad Sci, Hua Loo Keng Ctr Math Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[3] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[4] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Erds-Kac Theorem; Erds-Pomerance Theorem; Largest prime factor; Prime Number Theorem; 11K36; 37A44; MULTIPLICATIVE FUNCTIONS; SUMS;
D O I
10.1007/s40304-023-00354-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the linear independence between the distribution of the number of prime factors of integers and that of the largest prime factors of integers. Under a restriction on the largest prime factors of integers, we will refine the Erds-Kac Theorem and Loyd's recent result on Bergelson and Richter's dynamical generalizations of the Prime Number Theorem, respectively. At the end, we will show that the analogue of these results holds with respect to the Erds-Pomerance Theorem as well.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Non-abelian generalizations of the Erdos-Kac theorem
    Murty, MR
    Saidak, F
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2004, 56 (02): : 356 - 372
  • [22] Generalizations of the truncated pentagonal number theorem results
    Louis W. Kolitsch
    The Ramanujan Journal, 2022, 59 : 615 - 626
  • [23] ANOTHER PROOF OF THE PRIME NUMBER THEOREM
    BREUSCH, R
    DUKE MATHEMATICAL JOURNAL, 1954, 21 (01) : 49 - 53
  • [24] Generalizations of the truncated pentagonal number theorem results
    Kolitsch, Louis W.
    RAMANUJAN JOURNAL, 2022, 59 (02): : 615 - 626
  • [25] THE PRIME NUMBER THEOREM AND FRAGMENTS OF PA
    CORNAROS, C
    DIMITRACOPOULOS, C
    ARCHIVE FOR MATHEMATICAL LOGIC, 1994, 33 (04) : 265 - 281
  • [26] Sign changes in the prime number theorem
    Morrill, Thomas
    Platt, Dave
    Trudgian, Tim
    RAMANUJAN JOURNAL, 2022, 57 (01): : 165 - 173
  • [27] The Elementary Proof of the Prime Number Theorem
    Spencer, Joel
    Graham, Ronald
    MATHEMATICAL INTELLIGENCER, 2009, 31 (03): : 18 - 23
  • [28] On the prime number theorem for the Selberg class
    Kaczorowski, J
    Perelli, A
    ARCHIV DER MATHEMATIK, 2003, 80 (03) : 255 - 263
  • [29] HOW UNEXPECTED IS PRIME NUMBER THEOREM
    HIRSCHHORN, MD
    AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (06): : 675 - 677
  • [30] ON THE PRIME NUMBER THEOREM FOR ARITHMETIC PROGRESSIONS
    DABOUSSI, H
    JOURNAL OF NUMBER THEORY, 1989, 31 (03) : 243 - 254