Learning to Estimate Multivariate Uncertainty in Deep Pedestrian Trajectory Prediction

被引:0
|
作者
Castro, Augusto R. [1 ]
Grassi, Valdir, Jr. [1 ]
机构
[1] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
deep learning; uncertainty estimation; trajectory prediction; autonomous vehicles;
D O I
10.1109/LARS/SBR/WRE59448.2023.10333011
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the advent of autonomous vehicles (AVs), it is mandatory to care for pedestrians' integrity, as they are one of the most vulnerable entities in transit. Therefore, the AVs must anticipate their actions and predict their trajectories to improve tasks such as active perception, predictive path planning, predictive control, and human-robot interaction. The literature presents deep learning methods to predict pedestrian trajectories from the perspective of an onboard camera. However, only one study modeled the uncertainties involved in the model prediction. Thus, we address the problem by proposing a method to model both aleatoric and epistemic multivariate uncertainties in deep pedestrian trajectory prediction. We are the first to model the multivariate predictive uncertainty in pedestrian trajectory prediction by incorporating mathematical conditions to ensure stability during training. Our methodology can be applied to any deterministic method with minimal adjustments and present more accurate results than the BayesianLSTM.
引用
收藏
页码:415 / 420
页数:6
相关论文
共 50 条
  • [31] Pedestrian Trajectory Prediction With Learning-based Approaches: A Comparative Study
    Li, Yang
    Xin, Long
    Yu, Dameng
    Dai, Pengwen
    Wang, Jianqiang
    Li, Shengbo Eben
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 919 - 926
  • [32] Learning Pedestrian Group Representations for Multi-modal Trajectory Prediction
    Bae, Inhwan
    Park, Jin-Hwi
    Jeon, Hae-Gon
    COMPUTER VISION, ECCV 2022, PT XXII, 2022, 13682 : 270 - 289
  • [33] Pedestrian trajectory prediction method based on pedestrian pose
    Wang R.
    Song X.
    Chen K.
    Gong K.
    Zhang J.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (07): : 1743 - 1754
  • [34] Multi-modal Sensor Framework with Learnable Uncertainty Estimator for Pedestrian Trajectory Prediction
    Huynh, Manh
    Alaghband, Gita
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 582 - 589
  • [35] A deep neural network approach for pedestrian trajectory prediction considering flow heterogeneity
    Esfahani, Hossein Nasr
    Song, Ziqi
    Christensen, Keith
    TRANSPORTMETRICA A-TRANSPORT SCIENCE, 2023, 19 (01)
  • [36] StarNet: Pedestrian Trajectory Prediction using Deep Neural Network in Star Topology
    Zhu, Yanliang
    Qian, Deheng
    Ren, Dongchun
    Xia, Huaxia
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 8075 - 8080
  • [37] Deep learning-based pedestrian trajectory prediction and risk assessment at signalized intersections using trajectory data captured through roadside LiDAR
    Zhou, Shanglian
    Xu, Hao
    Zhang, Guohui
    Ma, Tianwei
    Yang, Yin
    JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 28 (06) : 793 - 805
  • [38] TAT: Pedestrian Intention and Trajectory Prediction
    Su, Shi
    Guo, Fengpeng
    Chen, Zhuanghao
    Huang, Hongcheng
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4182 - 4185
  • [39] Uncertainty-Aware Pedestrian Crossing Prediction via Reinforcement Learning
    Dai, Siyang
    Liu, Jun
    Cheung, Ngai-Man
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (10) : 9540 - 9549
  • [40] Holistic LSTM for Pedestrian Trajectory Prediction
    Quan, Ruijie
    Zhu, Linchao
    Wu, Yu
    Yang, Yi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3229 - 3239