Learning to Estimate Multivariate Uncertainty in Deep Pedestrian Trajectory Prediction

被引:0
|
作者
Castro, Augusto R. [1 ]
Grassi, Valdir, Jr. [1 ]
机构
[1] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
deep learning; uncertainty estimation; trajectory prediction; autonomous vehicles;
D O I
10.1109/LARS/SBR/WRE59448.2023.10333011
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the advent of autonomous vehicles (AVs), it is mandatory to care for pedestrians' integrity, as they are one of the most vulnerable entities in transit. Therefore, the AVs must anticipate their actions and predict their trajectories to improve tasks such as active perception, predictive path planning, predictive control, and human-robot interaction. The literature presents deep learning methods to predict pedestrian trajectories from the perspective of an onboard camera. However, only one study modeled the uncertainties involved in the model prediction. Thus, we address the problem by proposing a method to model both aleatoric and epistemic multivariate uncertainties in deep pedestrian trajectory prediction. We are the first to model the multivariate predictive uncertainty in pedestrian trajectory prediction by incorporating mathematical conditions to ensure stability during training. Our methodology can be applied to any deterministic method with minimal adjustments and present more accurate results than the BayesianLSTM.
引用
收藏
页码:415 / 420
页数:6
相关论文
共 50 条
  • [1] Survey of pedestrian trajectory prediction methods based on deep learning
    Kong W.
    Liu Y.
    Li H.
    Wang C.-X.
    Cui X.-H.
    Kongzhi yu Juece/Control and Decision, 2021, 36 (12): : 2841 - 2850
  • [2] A Review of Deep Learning-Based Methods for Pedestrian Trajectory Prediction
    Sighencea, Bogdan Ilie
    Stanciu, Rarea Ion
    Caleanu, Catalin Daniel
    SENSORS, 2021, 21 (22)
  • [3] A novel model based on deep learning for Pedestrian detection and Trajectory prediction
    Shi, Keke
    Zhu, Yaping
    Pan, Hong
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 592 - 598
  • [4] Multivariate Uncertainty in Deep Learning
    Russell, Rebecca L.
    Reale, Christopher
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (12) : 7937 - 7943
  • [5] A Survey of Deep Learning-Based Pedestrian Trajectory Prediction: Challenges and Solutions
    Jiang, Jiaming
    Yan, Kai
    Xia, Xindong
    Yang, Biao
    SENSORS, 2025, 25 (03)
  • [6] Deep Kernel Learning for Uncertainty Estimation in Multiple Trajectory Prediction Networks
    Strohbeck, Jan
    Mueller, Johannes
    Herrmann, Martin
    Buchholz, Michael
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 11396 - 11402
  • [7] Sparse Pedestrian Character Learning for Trajectory Prediction
    Dong, Yonghao
    Wang, Le
    Zhou, Sanping
    Hua, Gang
    Sun, Changyin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 11070 - 11082
  • [8] Deep Learning Based Pedestrian Trajectory Prediction Considering Location Relationship between Pedestrians
    Choi, Inkyu
    Yoo, Jisang
    Song, Hyok
    2019 1ST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (ICAIIC 2019), 2019, : 449 - 451
  • [9] Self-paced Learning for Pedestrian Trajectory Prediction
    Wu, Ya
    Li, Bin
    Zhang, Ruiqi
    Chen, Guang
    Li, Zhijun
    Liu, Zhengfa
    2022 INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM 2022), 2022, : 781 - 786
  • [10] SILA: An Incremental Learning Approach for Pedestrian Trajectory Prediction
    Habibi, Golnaz
    Jaipuria, Nikita
    How, Jonathan P.
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 4411 - 4421