Training Size Effect on Deep Learning Models for Geographic Atrophy

被引:0
|
作者
Slater, Robert [1 ]
Banghart, Mark [1 ]
Channa, Roomasa [1 ]
Blodi, Barbara A. [1 ]
Fong, Donald S. [2 ]
Domalpally, Amitha [1 ]
机构
[1] Univ Wisconsin Madison, Wisconsin Reading Ctr, Madison, WI USA
[2] Annexon Biosci, Brisbane, CA USA
关键词
D O I
暂无
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Fast Training of Deep Learning Models over Multiple GPUs
    Yi, Xiaodong
    Luo, Ziyue
    Meng, Chen
    Wang, Mengdi
    Long, Guoping
    Wu, Chuan
    Yang, Jun
    Lin, Wei
    PROCEEDINGS OF THE 2020 21ST INTERNATIONAL MIDDLEWARE CONFERENCE (MIDDLEWARE '20), 2020, : 105 - 118
  • [42] Fast Training Methods and Their Experiments for Deep Learning CNN Models
    Jiang, Shanshan
    Wang, Sheng-Guo
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8253 - 8260
  • [43] The reusability prior: comparing deep learning models without training
    Polat, Aydin Goze
    Alpaslan, Ferda Nur
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (02):
  • [44] Reproducibility of Training Deep Learning Models for Medical Image Analysis
    Bosma, Joeran Sander
    Peeters, Dré
    Alves, Natália
    Saha, Anindo
    Saghir, Zaigham
    Jacobs, Colin
    Huisman, Henkjan
    Proceedings of Machine Learning Research, 2023, 227 : 1269 - 1287
  • [45] Reproducibility of Training Deep Learning Models for Medical Image Analysis
    Bosma, Joeran Sander
    Peeters, Dre
    Alves, Natalia
    Saha, Anindo
    Saghir, Zaigham
    Jacobs, Colin
    Huisman, Henkjan
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 1269 - 1287
  • [46] Understanding Training Efficiency of Deep Learning Recommendation Models at Scale
    Acun, Bilge
    Murphy, Matthew
    Wang, Xiaodong
    Nie, Jade
    Wu, Carole-Jean
    Hazelwood, Kim
    2021 27TH IEEE INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE COMPUTER ARCHITECTURE (HPCA 2021), 2021, : 802 - 814
  • [47] On Efficient Training of Large-Scale Deep Learning Models
    Shen, Li
    Sun, Yan
    Yu, Zhiyuan
    Ding, Liang
    Tian, Xinmei
    Tao, Dacheng
    ACM COMPUTING SURVEYS, 2025, 57 (03)
  • [48] Deep Learning-Based Prediction of Individual Geographic Atrophy Progression from a Single Baseline OCT
    Mai, Julia
    Lachinov, Dmitrii
    Reiter, Gregor S.
    Riedl, Sophie
    Grechenig, Christoph
    Bogunovic, Hrvoje
    Schmidt-Erfurth, Ursula
    OPHTHALMOLOGY SCIENCE, 2024, 4 (04):
  • [49] A Deep Learning Model for Segmentation of Geographic Atrophy to Study Its Long-Term Natural History
    Liefers, Bart
    Colijn, Johanna M.
    Gonzalez-Gonzalo, Cnstina
    Verzijden, Timo
    Wang, Jie Jin
    Joachim, Nichole
    Mitchell, Paul
    Hoyng, Carel B.
    van Ginneken, Bram
    Klaver, Caroline C. W.
    Sanchez, Clara I.
    OPHTHALMOLOGY, 2020, 127 (08) : 1086 - 1096
  • [50] Post-training Quantization Methods for Deep Learning Models
    Kluska, Piotr
    Zieba, Maciej
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS (ACIIDS 2020), PT I, 2020, 12033 : 467 - 479