Multidimensional Spinors, Invariant Form, and the Dirac Equation

被引:1
|
作者
Monakhov, V. V. [1 ]
Kozhedub, A. V. [1 ]
机构
[1] St Petersburg State Univ, St Petersburg 198504, Russia
关键词
ALGEBRA;
D O I
10.1134/S1063779623030231
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We have studied restrictions on the invariant form and matrix of the generalized Dirac adjoint in a space of arbitrary dimension and signature and have shown that this matrix corresponds to the fundamental symmetry of the Krein space. We have proved that the choice of the generalized Dirac adjoint matrix uniquely determines which gamma matrices correspond to the time axes and which to the space axes.
引用
收藏
页码:480 / 488
页数:9
相关论文
共 50 条
  • [21] Low degree Lorentz invariant polynomials as potential entanglement invariants for multiple Dirac spinors
    Johansson, Markus
    ANNALS OF PHYSICS, 2023, 457
  • [22] Dirac spinors and flavor oscillations
    A. E. Bernardini
    S. De Leo
    The European Physical Journal C - Particles and Fields, 2004, 37 : 471 - 480
  • [23] Dirac spinors and tachyon quantization
    Pant, MC
    Bisht, PS
    Negi, OPS
    Rajput, BS
    CANADIAN JOURNAL OF PHYSICS, 2000, 78 (04) : 303 - 315
  • [24] Dirac operator on spinors and diffeomorphisms
    Dabrowski, Ludwik
    Dossena, Giacomo
    CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (01)
  • [25] Dirac spinors and flavor oscillations
    Bernardini, AE
    De Leo, S
    EUROPEAN PHYSICAL JOURNAL C, 2004, 37 (04): : 471 - 480
  • [26] THE DIRAC OPERATOR ON SYMPLECTIC SPINORS
    HABERMANN, K
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1995, 13 (02) : 155 - 168
  • [27] Quantum tomography for Dirac spinors
    Mosna, RA
    Vaz, J
    PHYSICS LETTERS A, 2003, 315 (06) : 418 - 425
  • [28] Chirality of Dirac Spinors Revisited
    Petitjean, Michel
    SYMMETRY-BASEL, 2020, 12 (04):
  • [29] A five-dimensional form of the Dirac equation
    Kocinski, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (23): : 4257 - 4277
  • [30] Generalizations of the Dirac equation in covariant and Hamiltonian form
    Loide, RK
    Ots, I
    Saar, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (10): : 2031 - 2039