Existence and Concentration Results for the General Kirchhoff-Type Equations

被引:4
|
作者
Deng, Yinbin [1 ]
Shuai, Wei [1 ]
Zhong, Xuexiu [2 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
[2] South China Normal Univ, South China Res Ctr Appl Math & Interdisciplinary, Guangzhou 510631, Peoples R China
关键词
Kirchhoff-type equations; Semiclassical solutions; Topologically stable critical points; NONLINEAR SCHRODINGER-EQUATIONS; SEMICLASSICAL BOUND-STATES; STANDING WAVES; POSITIVE SOLUTIONS; CRITICAL FREQUENCY; ELLIPTIC PROBLEMS; CRITICAL-POINTS; PEAK SOLUTIONS; SADDLE-POINTS; MULTI-BUMP;
D O I
10.1007/s12220-022-01145-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the following singularly perturbed Kirchhoff-type equations ? ? ? -epsilon 2M epsilon 2-N RN |Vu|2dx ?u + V(x)u = |u|p-2u in RN, u E H1(RN), N >_ 1, where M E C([0, oo)) and V E C(RN) are given functions. Under very mild assumptions on M, we prove the existence of single-peak or multi-peak solution u epsilon for above problem, concentrating around topologically stable critical points of V, by a direct corresponding argument. This gives an affirmative answer to an open problem raised by Figueiredo et al. (Arch Ration Mech Anal 213(3):931-979, 2014)
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Existence and Concentration Results for the General Kirchhoff-Type Equations
    Yinbin Deng
    Wei Shuai
    Xuexiu Zhong
    The Journal of Geometric Analysis, 2023, 33
  • [2] Existence and Multiplicity Results for a Class of Kirchhoff-Type Equations
    Tavani, Mohammad Reza Heidari
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (03): : 441 - 459
  • [3] Existence and multiplicity of systems of Kirchhoff-type equations with general potentials
    Che, Guofeng
    Chen, Haibo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (03) : 775 - 785
  • [4] An Existence Result for Fractional Kirchhoff-Type Equations
    Bisci, Giovanni Molica
    Tulone, Francesco
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (02): : 181 - 197
  • [5] EXISTENCE RESULTS FOR A KIRCHHOFF-TYPE PROBLEM WITH SINGULARITY
    Khodabakhshi, M.
    Vaezpour, S. M.
    Tavani, M. R. Heidari
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 351 - 362
  • [6] Existence and Concentration Result for the Kirchhoff Type Equations with General Nonlinearities
    Giovany M. Figueiredo
    Norihisa Ikoma
    João R. Santos Júnior
    Archive for Rational Mechanics and Analysis, 2014, 213 : 931 - 979
  • [7] Existence and Concentration Result for the Kirchhoff Type Equations with General Nonlinearities
    Figueiredo, Giovany M.
    Ikoma, Norihisa
    Santos Junior, Joao R.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 213 (03) : 931 - 979
  • [8] EXISTENCE AND CONCENTRATION RESULTS FOR KIRCHHOFF-TYPE SCHRODINGER SYSTEMS WITH STEEP POTENTIAL WELL
    Lu, Dengfeng
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (02) : 661 - 677
  • [9] Existence and multiplicity of solutions for p(.)-Kirchhoff-type equations
    AyazoClu, Rabil
    Akbulut, Sezgin
    Akkoyunlu, Ebubekir
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (04) : 1342 - 1359
  • [10] EXISTENCE AND CONCENTRATION OF POSITIVE SOLUTIONS FOR NONLINEAR KIRCHHOFF-TYPE PROBLEMS WITH A GENERAL CRITICAL NONLINEARITY
    Zhang, Jianjun
    Costa, David G.
    Joao Marcos, do O.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2018, 61 (04) : 1023 - 1040