EXISTENCE AND CONCENTRATION RESULTS FOR KIRCHHOFF-TYPE SCHRODINGER SYSTEMS WITH STEEP POTENTIAL WELL

被引:0
|
作者
Lu, Dengfeng [1 ,2 ]
机构
[1] Hubei Engn Univ, Sch Math & Stat, Xiaogan 432000, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
关键词
Kirchhoff-type Schrodinger system; variational method; concentration; steep potential well; HIGH-ENERGY SOLUTIONS; POSITIVE SOLUTIONS; NONTRIVIAL SOLUTIONS; MULTIPLICITY; EQUATION;
D O I
10.4134/BKMS.2015.52.2.661
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following Kirchhoff-type Schrodinger system -(a(1) + b(1) integral(R3) \del u\(2)dx) Delta u + gamma V(x)u = 2 alpha/alpha + beta\u\(alpha-2)u\v\(beta) in R-3, -(a(2) + b(2) integral(R3) \del v\(2)dx) Delta v + gamma W(x)v = 2 beta/alpha + beta\u\(alpha)\v\(beta-2)v in R-3, u, v is an element of H-1(R-3), where a(i) and b(i) are positive constants for i = 1,2, gamma > 0 is a parameter, V(x) and W(x) are nonnegative continuous potential functions. By applying the Nehari manifold method and the concentration-compactness principle, we obtain the existence and concentration of ground state solutions when the parameter gamma is sufficiently large.
引用
收藏
页码:661 / 677
页数:17
相关论文
共 50 条