Rapid and Flexible Humidity Sensor Based on Laser-Induced Graphene for Monitoring Human Respiration

被引:5
|
作者
Paeng, Changung [1 ]
Shanmugasundaram, Arunkumar [2 ,3 ]
We, Gunwoo [4 ]
Kim, Taewook [1 ,4 ,5 ]
Park, Jongsung [5 ,6 ]
Lee, Dong-Weon [2 ,3 ,7 ]
Yim, Changyong [1 ,4 ,5 ]
机构
[1] Kyungpook Natl Univ KNU, Dept Energy Mat & Chem Engn, Sangju Si 37224, Gyeongsangbuk D, South Korea
[2] Chonnam Natl Univ CNU, Sch Mech Engn, MEMS & Nanotechnol Lab, Gwangju 61186, South Korea
[3] Chonnam Natl Univ CNU, Adv Med Device Res Ctr Cardiovasc Dis, Gwangju 61186, South Korea
[4] Kyungpook Natl Univ KNU, Dept Energy Chem Engn, Sangju Si 37224, Gyeongsangbuk D, South Korea
[5] Kyungpook Natl Univ KNU, Dept Adv Sci & Technol Convergence, Sangju Si 37224, Gyeongsangbuk D, South Korea
[6] Kyungpook Natl Univ KNU, Dept Precis Mech Engn, 2559,Gyeongsang daero, Sangju 37224, Gyeongsangbukdo, South Korea
[7] Chonnam Natl Univ CNU, Ctr Next Generat Sensor Res & Dev, Gwangju 61186, South Korea
基金
新加坡国家研究基金会;
关键词
laser-induced graphene; intense pulsed light sintering; humidity sensing; respiration monitoring; biomedicaldevice; SENSING PROPERTIES; NANOCOMPOSITE; PHOTODETECTOR; POLYIMIDE; COPPER; METER;
D O I
10.1021/acsanm.3c05283
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Respiration is an important physiological parameter used to assess human health and metabolic activity. Herein, we propose a laser-induced graphene (LIG)-based humidity sensor for respiratory monitoring. This sensor is fabricated through a combination of laser irradiation and intense pulsed light (IPL) sintering techniques. Initially, an ink containing copper nanoparticles (CuNPs) and graphene nanoplatelets (GnPs) is coated onto a polyimide (PI) substrate. The LIG is formed on the PI film using laser irradiation. To establish a reliable electrical connection between the LIG and the copper electrode, the ink undergoes rapid IPL sintering, resulting in an IPL-sintered copper electrode. This technique not only optimizes the fabrication process but also obviates the need for traditional approaches, such as copper wire bonding, electrode patterning, or the application of conductive paint on the LIG sensor. The humidity-sensing capabilities of the sensor are assessed under various relative humidity (RH) conditions. The sensor's response escalates from roughly 15 to 92% as RH levels increase from 13 to 67%. The sensor showed minimal response to various potential interfering gases like ammonia, ethanol, carbon monoxide, sulfur dioxide, and nitrogen dioxide (with responses of 0.4, 1.87, 0.102, 0.12, and 0.29%, respectively), confirming its high selectivity for RH (91.2%). Additionally, the sensor demonstrates exemplary reproducibility, as evidenced by its consistent responses (approximately 47.65, 49.13, 48.65, 49.09, and 49.39) over five cycles at 40% RH. The LIG sensor is used to monitor a wide range of respiratory patterns, including normal, slow, fast, and apnea events. The sensor effectiveness is proven through the consistent detection of human breathing patterns over 30 min, demonstrating its stability and reliability for extended use in continuous respiratory monitoring. These findings highlight the significant potential of LIG sensors as advanced precision devices in clinical respiratory monitoring with potential integration into modern medical practices.
引用
下载
收藏
页码:4772 / 4783
页数:12
相关论文
共 50 条
  • [11] Flexible Capacitive Pressure Sensor Based on Laser-Induced Graphene and Polydimethylsiloxane Foam
    Huang, Lixiong
    Wang, Han
    Zhan, Daohua
    Fang, Feiyu
    IEEE SENSORS JOURNAL, 2021, 21 (10) : 12048 - 12056
  • [12] A Bandi flexible pressure sensor based on the composite of laser-induced graphene and AgNWs
    Zhang, Jiawei
    Cui, Yixuan
    Liu, Chunxiao
    Wang, Xiangfu
    Tang, Weihua
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (01)
  • [13] A Bandi flexible pressure sensor based on the composite of laser-induced graphene and AgNWs
    Jiawei Zhang
    Yixuan Cui
    Chunxiao Liu
    Xiangfu Wang
    Weihua Tang
    Journal of Materials Science: Materials in Electronics, 2023, 34 (1)
  • [14] Flexible Temperature and Flow Sensor from Laser-Induced Graphene
    Marengo, Marco
    Marinaro, Giovanni
    Kosel, Jurgen
    2017 IEEE SENSORS, 2017, : 1658 - 1660
  • [15] Blood Oxygen Saturation Estimation with Laser-Induced Graphene Respiration Sensor
    Bogdanova, Ana Madevska
    Koteska, Bojana
    Vicentic, Teodora
    Ilic, Stefan D.
    Tomic, Miona
    Spasenovic, Marko
    JOURNAL OF SENSORS, 2024, 2024
  • [16] Application of Laser-Induced Graphene Flexible Sensor in Monitoring Large Deformation of Reinforced Concrete Structure
    Liu, Lina
    Cai, Chenning
    Qian, Zhenghua
    Li, Peng
    Zhu, Feng
    Sensors, 2024, 24 (23)
  • [17] A Sensor for Electrochemical pH Monitoring Based on Laser-Induced Graphene Modified with Polyfolate
    Zutautas, Vytautas
    Trusovas, Romualdas
    Sartanavicius, Aivaras
    Ratautas, Karolis
    Selskis, Algirdas
    Pauliukaite, Rasa
    CHEMOSENSORS, 2023, 11 (06)
  • [18] Highly Skin-Conformal Laser-Induced Graphene-Based Human Motion Monitoring Sensor
    Jeong, Sung-Yeob
    Lee, Jun-Uk
    Hong, Sung-Moo
    Lee, Chan-Woo
    Hwang, Sung-Hwan
    Cho, Su-Chan
    Shin, Bo-Sung
    NANOMATERIALS, 2021, 11 (04)
  • [19] Rapid response flexible humidity sensor for respiration monitoring using nano-confined strategy
    Zhou, Cheng
    Zhang, Xiaoshuang
    Tang, Ning
    Fang, Ye
    Zhang, Hainan
    Duan, Xuexin
    NANOTECHNOLOGY, 2020, 31 (12)
  • [20] Study and fabrication of flexible triboelectric pulse tactile sensor based on laser-induced graphene
    Hsieh, Ching
    Huang, Cheng-Chun
    Su, Ching-Yuan
    Tsai, Yao-Chuan
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2024, 63 (03)